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Spectral Representations of Infinitely Divisible Processes*

BALRAM S. RAJPUT AND JAN ROSINSKI

University of Tennessee at Knoxville

Abstract. The spectral representations for arbitrary discrete parameter infinitely divisible
processes as well as for (centered) continuous parameter infinitely divisible processes, which
are separable in probability, are obtained. The main tools used for the proofs are (i) a
*polar-factorization® of an arbitrary Lévy measure on & separable Hilbert space, and (ii)
the Wiener-type stochastic integrals of non-random functions relative to arbitrary "infinitely
divisible noise”.

0. INTRODUCTION

For the analysis of many statistical and probablistic problems for stationary Gaussian
processes, a significant tool is provided by the spectral representations of these processes in
terms of the “Gaussian noise”. Motivated by these considerations, many authors advocated
the need to develop similar spectral representations for symmetric stable processes in terms
of the “stable noise” and to apply these to study the analogus problems for these processes;
and such representations were in fact developed by several authors (Schilder {27], Kuelbs
(13}, Bretagnolle et al (2] and Schriber [28]). With the same motivation, recently spectral
representations of symmetric semistable processes in terms of the “semistable noise” are
also obtained (Rajput, Rama-Murthy [20]) which are shown to be valid for non-symmetric
semistable processes as long as a, the index of the process, is not 1; more recently, a sim-
ilar result for non-symmetric stable processes with index a # 1 is also obtained (Hardin
[7]). Already, the spectral representations of symmetric stable processes have successfully
been used to solve the prediction and interpolation problems (e.g. Cambanis, Soltani (3],
Cambanis, Miamee [4], Hosoya {9]) and to study the structural and path properties (e.g.
Cambanis, Hardin and Weron |5, Rootzen [22], Rosinski [25], and Rosinski and Woyczyn-

ski [26,) for certain subclasses of these processes.
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Keywords and Phrases: Spectral representation, infinitely divisible process, stochastic integral.

Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300.

*The results of this paper were communicated to ICM-86 Steering Committee on May 2, 1986, under the
title "Stochastic integrals relative to i.d. random measures with applications to the integral representations
of i.d. processes”, and were presented to the ICM at Berkeley on August 5, 1986.
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s
-:.~ R In working with Gaussian and symmetric stable processes X = {X; : teT} and their
:f' g spectral representations {f fidA}, one discerns two main reasons which make these repre-
- . sentations useful in solving various questions about the processes X: (a) Many problems of
ko interest about X can be meaningfully reformulated in terms of the non-random functions
i :"E-_ [+ and the corresponding “noise” A (or sometimes in terms of certain parameters charac-
‘:": terizing A, e.g. its control measure). (b) These reformulated questions can be effectively
__ _ solved by making use of the rich structure of the metric linear space of functions generated
'.:‘Ef: by {ft} and the fact that A enjoys properties very similar to X but, at the same time,
‘:_, admits much simpler probablistic structure. In view of this observation and the remarks
" made in the previous paragraph, it is thus tempting to suggest that one should develop
:ﬁ spectral representations for each subclass of infinitely divisible processes X in terms of the
;EJ non-random functions f; belonging to a “nice space” and the “noise” A which exhibits
L5 properties similar to that of X. But, since different methods of proof may be required
5 to obtain spectral representations for different subclasses of infinitely divisible processes,
"":’ it may lead to an unending process; and thus a better question would be to ask: Is it
f’ , possible to develop one procedure whereby, for any given infinitely divisible process X,
ij' :::-; one can choose non-random functions f; and “an infinitely divisible noise” A such that
( N Xf3 {f ftdA} and, additionally, the following criterions are met?
'-::i (i) The “noise” A retains properties similar to X; for example, if X belongs to a
."_"‘ known class such as a-stable or self-decomposable processes, then A belongs to the
j corresponding class of “noises”.
-: __ (ii) The functions f; belong to a linear topological space which is “similar” in its struc-
:;-i ture to that of the linear space of the process X.
K, “ The main theme of this paper is to provide an “essentially” complete affirmative answer to
-, this question. This is accomplished in two steps: first, we obtain the spectral representa-
:‘ tions for arbitrary discrete parameter infinitely divisible processes; and then, using this and —— |
| :: some limiting arguments, we obtain the representations for continuous parameter infinitely
2 divisible processes which are separable in probability. We reiterate that the representing
‘,' “noise” A and the representing functions f; chosen for the representations do meet the
: ,.‘E- criterions (i) and (ii), respectively. In fact, as regards to (ii), we show that the space L |
.r: ' generated by {f;} is a subspace of a suitable Musielak-Orlicz space, which is continuously - -
. (and linearly) embedded in the linear space L(X) of X. Further, if X satisfies some addi- -~ --—-
:::.;:: ) tional conditions (like the ones mentioned above in the continuous parameter case), then ”r:
v NI
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we show that L is in fact topologically and linearly isomorphic to L(X). In addition to the
above representations which are valid only in law, we also obtain spectral representations
which are valid almost surely; this, however, requires that the process be redefined on a
slightly larger probability space. Before we end this paragraph we would like to make a
few more points: First we note that “integral” representations (in law) of an arbitrary
infinitely divisible process in terms of the “Poisson noise” are known (Maruyama [15]);
but, as neither the noise nor the representing functions necessarily meet the requirements
we ask for, these representations do not fall in the category of the spectral representations
we are interested in this paper. Second we point out that our spectral representations (in
law) of infinitely divisible processes, when specialized to stable and semistable processes,
yield, in a unified way, all known spectral representations for these processes mentioned in
the first paragraph above. Finally, we mention the papers (Cambanis [8], Rajput, Rama-
Murthy [21) and Hardin [8]) which have some relevance to the spectral representations we

have discussed above.

Besides the spectral representations noted above, we also present several other results
which fall in two broad categories. All of these play a crucial role for our proofs of the
spectral representation theorems, but we also feel that these will be of independent interest.
In one category of these results, we obtain a “polar factorization” of an arbitrary Lévy
measure on £, in terms of a finite measure on the boundary of the unit sphere of ¢,
and a family of Lévy measures on the real line. This factorization is similar in spirit to
the known factorization of a symmetric stable Lévy measure on R™ (Lévy [14]) and on £,
(Kuelbs {13]); and plays an analogus role in the development of the spectral representations
here as did the factorization of a symmetric stable Lévy measure for the proofs of the
spectral representations of symmetric stable processes in [2, 13, 27, 28|. The results in
the other category concern with a systematic study of Wiener-type integrals / fdA of non-
random functions with respect to an arbitrary “infinitely divisible noise” A. The main
results we present here are: (a) a characterization of A-integrable functions in terms of
certain parameters of A; (b) the identification of the space of A-integrable functions as a
certain Musielak-Orlicz space; and (c) an isomorphism theorem between this Musielak-

Orlicz space and a suitable subspace of Lp-space of random variables. The theory of

Wiener-type integrals under various hypotheses on the “noise” A has a long history (e.g.
Urbanik, Woyczynski [30], Urbanik [29], Rosinski [23, 24], Schilder [27] and Rajput and

Rama-Murthy [20]); the development of these integrals presented here is the most general
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in the sense that we require minimal hypotheses both on the “noise” A and the space on
which integrands and A are defined.!

The organization of the rest of the paper is as follows: Section 1 contains the prelimi
naries; Section 2 contains the development of stochastic integrals relative to the “infinitely
divisible noise” A and a characterization of A-integrable functions. Section 3 concerns with
the identification of the space of A-integrable functions as a certain Musielak-Orlicz space
and its isomorphism with the subspaces of L,-space of random variables. Sections 4 and
5 contain, respectively, the spectral representation results (in law) for the discrete and
the continuous parameter infinitely divisible processes; Section 4, also contains the “polar
factorization” result of Lévy measures on £;. Section 6 concerns with the spectral repre-
sentation of infinitely divisible process which hold almost surely. Section 7 constitutes of
an appendix and contains a proof of a result which establishes the existence of a measure
on the product space given a family of marginal measures satisfying certain hypotheses.

We would take the liberty here to thank Mary Drake for the patience and care she has

shown while typing this manuscript.
I. PRELIMINARIES AND SOME NOTATIONS

In this section, we recall some definitions and known facts; also we fix some notations
and conventions which we shall use throughout the paper.

Let H be a real (finite or infinite dimensional) separable Hilbert space and let u be
an infinitely divisible (ID) prob. measure on H (i.e. u has a unique n-th root for each
n=1,2,3...). Asis well known, for every ID prob. measure u, {u° : s > o}, the set of
s-th roots of u, forms a continuous (in the weak topology) semigroup under convolution,
which is also tight on every finite interval of Rt = (0, 00). Using this semigroup, we shall
now define Gaussian, stable and semistable prob. measures on H. These definitions are
non-standard but are equivalent to the traditional definitions which are usually given in
terms weak limits of certain normed sums. We adopted this route mainly because we make
use of these defining properties of these prob. measures. Before we record these definitions,
we introduce a few notations: For a measure v on H and a nonzero a in R (the reals), we

denote by a - v, the measure defined by a - v(B) = v(a~!B), for every Borel set B of H;

!Recently the authors have received a manuscript by Kwapien and Woyceynski entitled Semsmartingale
integrals nia decouphing inequalities and tangent processes. In this paper, they give a characterization of previsible
stochastic processes that are integrable relative to semimartingales. As a necessary first step to obtain this
result, they also characterize non-random functions that are integrable relative to general “independent
increment noise”. Thie later result, obtained independently of ours, has some overlap with our Theorems
3.3 and 3.4 when specialized to § = [0,00) and p = 0.

...............
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) j: , further, we shall use the notations S(a), S(r,a) and SD for the phrases “stable of index
"3 a”, “semistable of index (r,a)” and “self-decomposable”, respectively, where 0 < a < 2
. _' and 0 < r < 1. Let now u be a prob. measure on H, we say u is a S(a) (resp. a S(r,a))
:‘0:: ‘ prob. measure if u is ID and
' ;} N
K (1.1) pt=ta - u x 84, for all te(0,1],
v (1.2) (resp. u" =re - u * b,,)),
:.' where 6.(;) and 6,(,) denote the Dirac measures at the elements z(t) and z(r) of H,
A respectively, and * denotes the usual convolution operation. If z(t) in (1.1) (resp. in (1.2))
< is 0, the zero element of H, and a # 1, then we say u is a centered S(a) (resp. a centered
\::_: S(r,a)) prob. measure. If & = 1, then we say u is a centered S(1) (resp. a centered S(r,1))
: prob. measure only in the case when u is a symmetric S(1) (resp. S(r,1)) prob. measure.
2 If uis ID and (1.1) (or equivalently (1.2)) holds with a = 2, then we say u is Gaussian,
T and, if, in addition, z(t) = 8 (or equivalently z(r) = 8), then we say u is centered (or
\ symmetric) Gaussian. Finally, we say u is a SD prob. measure, if
o
(" ) (1.3) =1t p*uvy, forallo<t <1,
N
-'_'h.': where v; is a prob. measure on H.
o~ Let now T be an arbitrary index set and X = {X; : teT} be a real stochastic process,
N we say X is an ID (resp. a symmetric ID) process if, for every finite set {t,,---,t,} of
" T, L(X¢,, - ,X41,), the law of (X¢,, -+ ,X¢,), is an ID (resp. a symmetric ID) prob.
:": measure on R", the n-Euclidean space. The definitions of SD, S(a), S(r, @) and Gaussian |
: processes, of their symmetric counterparts and of centered S(a) and S(r, a) processes can |
s be stated in the obvious way. |
: ) Now we shall define various ID random (r.) measures. Throughout the paper, unless
) :'.: stated otherwise, we denote, by S, an arbitrary non-empty set and, by §, a é-ring of
o subsets of S with the property:
&
- (1.4) There exists an increasing sequence {S,} of sets in § with LJS,l =S.
. "
N Let A = {A(A): AeS} be a real stochastic process defined on some prob. space (Q1, ¥, P).
' We call A to be an independently scattered r. measure (or r. measure, for short), if, for every
.
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sequence {A,} of disjoint sets in §, the r. variables A(4,), n = 1,2,---, are independent,

and, if [ JA, belong to §, then we also have
n

A (UA,,) =Y A(4n), as,

where the series is assumed to converge almost surely. In addition, if A(A) is a symmetric
r. variable, for every AeS, then we call A a symmetric r. measure. We call a r. measure A
to be an ID r. measure if A(A) is ID; if, in addition, A(A) is symmetric, then we call A
to be a symmetric ID r. measure. The definitions of S(a), S(r,a), SD and Gaussian r.
measures, of their symmetric counterparts and of centered S(a) and S(r,a) r. measures
can be stated analogously.

Before we end this section, we would like to mention a few more conventions and nota-
tions: While writing the Lévy representation of the characteristic (ch.) function 4 of an

ID prob. measure u on H one can use many different centering functions, we found the

centering function
llzll if 2l <1
7(z) = z

2 ||z > 1

]|

easier to work with in our calculations. We shall, therefore, use this centering function
throughout. By a Lévy measure defined on a Borel subset B of H, we shall always mean
any measure M on B satisfying [p min(1, ||2||?)dM < oo, with M({8}) = 0, if feB.
Whenever it is important that M be defined on the whole of H, we will do so by assigning
M (B¢) = 0; but will use the same notation for the extended measure.

By the statement “M is a SD Lévy measure on B” we would mean that M is a Lévy
measure of a SD prob. measure on H; we shall adopt a similar convention relative to the
Levy measures of other classes of ID prob. measures on H. Finally, for a given topological

space X, B(X) will always denote its Borel o-algebra.
I1. INFINITELY DIVISIBLE RANDOM MEASURES AND STOCHASTIC INTEGRALS

Throughout this paper A = {A(A) : AeS} will denote an ID r. measure defined on
some prob. space ({1, 7, P) (recall that § stands for a é-ring of subsets of an arbitrary
non-empty set S satisfying (1.4)). Since, for every AeS, A(A) is an ID r. variable, its ch.

function can be written in the Lévy’s form:

(2.1) L(A(A))(t) = exp {ituo(A) - %t2u1(A) + /R(e"‘z -1- itr(z))FA(dz)} ,
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where —00 < y,(A) < 00, 0 < v1(A) < oo and F, is a Lévy measure on R. In this
section, we first show (Proposition 2.1) that there is a one to one correspondence between
the class of ID r. measures on one hand and the class of parameters v,, v; and F. on
the other. This fact, under various additional assumptions, was “essentially” proved in
Prékopa (18, 19| and Urbanik and Woyczynski (30]. We include a proof of this fact here,
since this proposition is quite important to us and since our proof is very simple and uses
only standard arguments of the classical probability theory. Through this result we also
define A, the control measure of A. Next we show (Lemma 2.3) that F.(-) determines
a unique measure on o(S) x B(R) which admits a factorization in terms of a family of
Lévy measures p(s,-), s¢S on R and the measure A. This fact plays an important role
throughout the paper; in particular, this helps us derive another form of the ch. function
of L(A(A)) in terms of the measures p(s,-) and A (Proposition 2.5). This form of the ch.
function plays a crucial role in obtaining the ch. function of the stochastic integral fs fdA
(which we also define) (Proposition 2.6) and in the proof of the main result of this section

(Theorem 2.7) which provides an important characterization of A-integrable functions.

PROPOSITION 2.1. (a) Let A be an ID r. measure with the ch. function given by (2.1).
Then v, : § — R is a signed-measure, vy : § — [0,00) is a measure, F4 is a Lévy
measure on R, for every AeS, and § > A — F4(B)e[0,00) is a measure, for every
BeB(R), whenever 0 ¢ B.

(b) Let v,, vy and F. satisfy the conditions given in (a). Then there exists a unique (in
the sense of finite-dimensional distributions) ID r. measure A such that (2.1) holds.

(c) Let v, vy and F. be as in (a) and define

A(A4) = v, [(A) + i (A) + Lmin{l,zz}FA(dz), AeS.

Then A : § +— [0,00) is a measure such that A(A,) — 0 implies A(A,) — 0 in prob.
for every {A,} C S; further, if A(A})) — 0 in prob. for every sequence {A!} C S such
that A, C A,eS, then A(A,) — 0.

PROOF: (a) Let {Ax},_, be pairwise disjoint sets in §. By the uniqueness of Lévy’s
representation of the ch. function of an ID distribution, it follows, using £ (A (U=, 4x)) =
15~ £ (A (Ax)), that all three set functions v,, v, and F.(B) are finitely additive. Let
now AneS, A, \, 0. Since A(A4,) —~ O in prob., we have that v, (A,) — 0, v1(A4,) = 0
and [p min{1,z2}F,,(dz) — 0. By Chebychev’s inequality, we get

Fa, ({lz| >€}) <72 /R min{1,z%}F4,_(dz) - 0,
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for every €¢(0,1), which completes the proof of (a).
(b) The existence of a finitely additive independently scattered r. measure A = {A(A) :

AeS} follows by a standard application of the Kolmogorov Extension Theorem (see e.g.

[11]). To prove that A is countably additive, let ApeS, Ap \, 0. Since Fq, > Fa, > ---,
we get

lim | min{1,z?}F,, (dz) < lim min{1,z*}F,_(dz)

nmeeJr nTee J{lzl<e}

+ lim Fy, ({|z| 2 €})

< / min{1,z2}F,, (dz) ,
{Iz|<e}

where £ > 0 is arbitrary. Letting € — 0 we obtain that [ min{1,z?}F,,(dz) — 0. Since
also v (A,) — 0 and v,(A,) — 0, we get A(4,,) — 0 in prob., proving that A is countably
additive.

(c). It follows that A is countably additive by a similar argument as we used for proving
the countable additivity of A above. For the last part, decompose A, = As.l) U A&z) such
that v, (AS‘I)) = v}t (As) and v, (4 (2)) —v(A,). Since A (AS.")) — 0 in prob. as n —

o]

0o, t = 1,2, we get that v, ( S.)> — 0, 1 ( S,i)) — 0 and [ min{1,z%}F,((dz) - O as
n — oo, 1 = 1,2. This implies that A(4,) — 0.

Definition 2.2. Since A(S,) < o0, n = 1,2,... we may (and do) extend X to a o-finite

measure on (S,0(S)); we call A, the control measure of A.

LEMMA 2.3. Let F. be as in Proposition 2.1(a). Then there exists a unique o-finite
measure F on o(S) x B(R) such that

F(A x B) = Fa(B), for all AeS, BeB(R).

Moreover, there exists a function p : S x B(R) — [0, 00| such that
(i) p(s,-) is a Lévy measure on B(R), for every seS,
(ii) p(-, B) is a Borel measurable function, for every BeB(R),
(iii) [5, g (s z)F(ds, dz) = [ [fg h(s,z)p(s,dz)] A(ds), for every o(S) x B(R)-meas-
urable function h : S x R — [0,00]. T}us equality can be extended (with obvious

restrictions regarding the arithmetic of +oo) to real and complex-valued functions
h.

The proof of Lemma 2.3 relies on some measure-theoretic facts stated in Proposition

2.4. This proposition, under additional assumptions on the space T and the function Q, is

8
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.::..' . essentially known (one proves the existence of Q by using standard compactness argument

o . . .

N for the extension of measures; and, then one constructs ¢(-,-), using the existence of the
. regular conditional prob. on T x R). Since in our paper (T, A) is an arbitrary measurable
) .

Wi space, the compactness argument cannot be used; and a basically different proof seems to
> . .

Yo be required to construct the measure Q. In fact, we first construct the function ¢(:,-) and
b

then use Tulcea’s Theorem ([1] p. 209) to construct Q. We are unable to find a reference
for a proof of this result in the present general form, for this reason and for reasons of
completeness, we include a proof in Appendix (Section 7). We separated this proof from

the main body of the paper, since it does not provide any insight to the main ideas of this

L paper.

:: PROPOSITION 2.4. Let (X, B) be a standard Borel space (i.e. a measurable space such
__‘.:‘-". that B is o-isomorphic to the Borel o-algebra of some complete separable metric space),
-:": and let (T, A) be an arbitrary measurable space. Let Q,(A, B) be a non-negative function
’—- of AeA, BeB, satisfying:

(a) for every Aef, Q,(A,") is a measure on (X, B),

(b) for every BeB, Q, (-, B) is a measure on (T, 4),

‘J" \ (c) the measure A\, defined by A (A) = Q, (A, X) is o-finite on (T, A).

E:_: Then there exists a unique measure Q on the product o-algebra A x B such that

A

s (2.2) Q4 xB) = Q,(4,8) = [ alt, B}, (at),

for every AcA, BeB, where q: T x B - (0, 1] fulfills the following conditions:

(d) for every t, q(t,-) is a probability measure on B,

_.‘ (e) for every B, q(-, B) is A-measurable.

_ Further, if ¢,(-,-) is some other function satisfying (2.2), (d) and (e), then off a set of
NN A, -measure zero, q(t,-) = q(t, ).

~ -

E,: PROOF OF LEMMA 2.3: Put

[}
el

\II\ l“ l\ -l. '\‘l

G,(A,B) = /B min{1,z?}F,(dz), AeS, BeB(R).

Since for every BeB(R), G, (-, B) is a finite measure on (S, $NS,),n >1,G,(-,B) hasa

unique extension to a o-finite measure on (S,0($)). Denoting this extension by Q, (A, B),

. v"
,‘;: we see that the assumptions of Proposition 2.4 are satisfied with (T, A) = (S,0(S)) and
W
b 9
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®
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N
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(X, B) = (R, B(R)). Thus there exists a measure Q on the product o-algebra o(§) x B(R)
such that

Q4% B) = G,(4, B) = [ s, )2, ds),

where A {A4) = G, (A, R) and ¢ satisfies (d) and (e) of Proposition 2.4. Note that A (A) <€
A(A), for every Aeo($), which implies that A, < A; now define

p(s,dz) = ‘fi/\’\" (s) (min{l,:z"’})_1 q(s,dz).

Then (ii) is satisfied and

Lmuﬁmm=ﬁm£mm:QMg,

which proves (i) (we may always assume that %‘l(s) < 1 for all s). Define

(2.3) F(C) = /S [ /R Ie ((s, 7)) p(s,d:t)] A(ds)

Ceo(S) x B(R); then F is a well-defined measure that satisfies, for every AeS and BeB(R),

F(A x B) :/A UB p(s,dz:)] A(ds)

:Ammmywmmﬁum
:/Axa (min{l,xz})_lQ(dS,dx)

(iii) now follows from (2.3) by a standard argument. This completes the proof of Lemma
2.3. 8

Using Lemmas 2.1 and 2.3 we obtain a very useful form of the ch. function of A(A):

PROPOSITION 2.5. The ch. function (2.1) of A(A) can be rewritten in the form:

£ (A(A)) () :exp{/A K(t,s)A(ds)}, teR, AeS,

where

K(t,s) = tta(s) - %t202(s) + /n (e® -1~ itr(z)) p(s, dz),

10
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w a(s) = %{l(s), o%(s) = %l(s) and p is given by Lemma 2.3. Moreover, we have

o

: (2.4) la(s)] + o? / min{1,z%)p(s,dz) = 1 a.efA].

.r':_ PROOF: First part immediately follows from (2.1) and Lemma 2.3. Since, for every AeS§,
':' we have

.

. ..

o / [[a(s)é + 0?(s) +/ min{l,zz}p(s,dx)} A(ds) =

- A R

N v, [(4) + 11 (A) +/ min{1, 22} F(ds, dz) = A(A) = / dx,

i SxR A

*'_'j: (2.4) follows; which completes the proof. I

. The following definition of the stochastic integral, proposed first by Urbanik and Woy-
,.

. czynski [30] is the usual definition of the integrals with respect to a vecter measure taking

values in the L (Q, 7, P)-space (see also [23}).

Definition. (a) Let f = Z —1Z;1a, be a real simple function on S, where A,eS are

disjoint. Then, for every Aeo(S), we define

- / fdA = Zz, A(AN 4))

\ (b) A measurable function f: (S,0(S)) — (R, B(R)) is said to be A-integrable if there
N exists a sequence {f,} of simple functions as in (a) such that
.
) ::: (l) fn — f a.e, {/\]
:’ (ii) for every Aeo($), the sequence {f, fndA} converges in prob.,as n -» cc.
.j‘.g If fis A-integrable, then we put
8
:;3 /fdA = P~ lim f,,dA
_ A
T
&N where {fn} satisfies (i) and (ii).
'('n_
,':" We note that fA fdA is well defined (i.e. it does not depend on the approximating

sequence {f,}, Urbanik and Woyczynski [30]). Now we proceed to find an expression of
the ch. function of [ fdA:

Ei

A 11
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PROPOSITION 2.6. If f is A-integrable, then [, |K(tf(s), s)|A(ds) < oo, where K is given

in Proposition 2.5, and

(2.5) ﬁ( /S fdA) (t)=exp{ /S K(tf(s),s)A(ds)}, teR.

PROOF: Note first that (2.5) holds for simple functions. Let {f,} be a sequence of simple

functions in the definition of A-integral. Define complex measures Uen, teR, n > 1, by

e / K(tfn(s),s)Mds),  Aea(S).

Since, for every teR and Aeo(S$)

lim p¢n(A) = lim logﬁ (/ fndA) (1)
n— o0 n—oo A

=logf ( /A fdA) (t)

= #t(A)’
it follows, by the Hahn-Saks-Vitali Theorem, that u; is a countably additive complex
measure. Clearly u; is absolutely continuous with respect to A. Therefore, for every teR,

there exists an h;eL1(S,0($), A; C) such that

og £ ([ d8) () = wata) = [ huloiaae).

for every Aeo(S). To end the proof it suffices to show that he(s) = K(tf(s),s) a.e. [A], for
each teR. Let teR be fixed. By the continuity of K(,s), for each seS, we obtain

(2.6) K(tfn(s),s) = K(tf(s),s) a.e. [A],

as n — oo. Using Egorov’s Theorem, we may decompose S as follows: S = L_JJ 0Aj,
where A(4,) = 0, A(4;) < oo, if j > 1, and such that (2.6) holds uniformly in seA;,

3 =1,2,.... Hence, for every j > 1 and Aeo(S$),
/ he(s)Mds) = ue(AN A;) = lim K(tf.(s), s)A(ds)
ANA; N0 JANA;

= / K(tf(s),s)A(ds).
ANA,

It follows that h¢(s) = K(tf(s),s) a.e.[A] on A;, 7 > 1. Since A, is a A-null set, the last
equality holds a.e.[\]on S. §

As we noted in the beginning of this section, the following is the main result of this
section. It provides a necessary and sufficient condition for the existence of fs fdA in

terms of the deterministic characteristics of A.

12
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_.::%; ) THEOREM 2.7. Let f: S — R be a 0(S)-measurable function. Then f is A-integrable if
";' and only if the following three conditions hold:
. () [51U(f(s), 5)A(ds) < oo,

i (i) J¢ 1(6) o (s)M(ds) < oo,

b and

:')' (iii) g Vol s)A(ds) < oo,

\' where

= U(u,s) = ua(s) + / (r(zu) — ur(z)) (s, dz) ,

R

e V,(u,s) = / min {1, |zu|?} p(s, dz) .

R

'g:; Further, if f is A-integrable, then the ch. function of fs fdA can be written as
:-.f.: (iv) L(fg fdA)(t) = exp {itaf — 320} + [p(e*® -1 - t'tr(z))F,(dz)},
.. where

NS ay = / U(f(s), s)A(ds),

iy s

e

= [ 156 Pat s,

3% S
(

1‘:_‘ and

<o Fs(B) = F ({(s,z)eS x R : f(s)zeB \ {0}}), BeB(R).

41

PROOF: Assume that f is A-integrable. By Proposition 2.6, we have that
'f (/; fdA) (t)] =exp {2/5 ReK(tf(s),s)A(ds)}
= exp {2/; [—%tzﬂ(s)az(s) + /R (cos(tf(s)z) —- 1) p(s,dz)] A(ds)}
= exp {—tza} + 2/ (costz — l)F,(dz)}
R

is the ch. function of an ID distribution. Hence ¢} < oo and [ min{1,z?}Fs(dz) < co.

Uae
.’" ll W7 L
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This proves (ii) and (iii). Now, since |r(z) — sinz| < 2min{1,z%}, we get

|U(u,s)| < |ua(s / [sin zu - ur(z)] p(s, dz)

o | + '/R[r(zu) — sin zu| p(s, dz)

i:::,:.‘ < |ImK(u,s)| + 2V, (u,s).
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\53 ‘ Thus (i) follows by Proposition 2.6 and already proven (iii). In view of (i), (ii) and (iii), it

\f,'; is easy to derive (iv) from (2.5).

’" Conversely, assume that (i), (ii) and (iii) hold. Let A, = {s:|f(s)| < n} N S,. We have
:‘f that Ane§ and A, / S. Choose f,’s, simple S-measurable functions, such that f,(s) = 0,
-\ N
" if s & An, [fn(s) — f(s)| < %, if seAn, and |fu(s)| < |f(s)], for all seS. Clearly f, — f

’ everywhere on S, as n — oo. Since, for every Aeo(S) and n, m > 1,
S [fn(s) = fm{s)] 1a(s)] < 21/ (s)],

:, by Lemma 2.8, which follows this proof, we get

U ({f(5) = ()] 1a(8),5)] < 21U (£ (), 5)] + 27V, (£(s), 5) |

L) \'r"'

\.l':'

:":"_{ Therefore, by the Dominated Convergence Theorem, we obtain that, for every Aeo(S),
S

X Jim [ U526 = Jm(9)] 1400, 6) M) =0,

*= hm / (£ () = fm(s)}* 14(s)o? () A(ds) =0,

. \_:_. n,m—oo s

( , and
2
3 lim [V, (1£a(s) = fm(s)] 1a(5), 5) A(ds) = 0.

SO n,m—oo f¢
:"'J'
In view of (iv), limp m—oo £ (fs [fn = fm] lAdA) (t) — 1, for every teR and Aeo(S). Hence

ol the sequence {fA j',.dA}:o_l converges in prob., for every Aeo(S); i.e. f is A-integrable. |
el =
e LEMMA 2.8. For every ueR, seS and d > 0,

--.f.

X sup {|U(cu,s)| : |¢] < d} < d|U(u,s)| + (1 + d)?V, (u, s).
\ PROOF: Let |¢|] < d. We have

Ulcu,s) = cua(s) +/ [7(cuz) — cur(z)] p(s, dz)
- R

_ = cua(s) + c/ [r(uz) — ur(z)] p(s, dz)

W R

ey +/ [r(cuz) — er(uz)] p(s, dz)

o R
2o = cU(u,s) + R(c,u,s),

)
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where R(c, u,s) denotes the last integral. Since r(cuz) —cr(uz) = 0if |uz| < min{1,¢|~1}

and |7(cuz) — er(uz)| < 1+ d otherwise, we get

|R(c,u,s)] < (1+d) p(s,dz)
{luz|>min{1,[c|~1}}

<(1+4d)p (.s, {a: : min{1, juz|} > min{1, lcl_l}})

1+d ) 9
S gl o2} /Rmm{l,luz[ }o(s,dz),

A

by Chebyshev’s inequality. Since the last quantity is bounded by (1+d)3V,(u, s), the proof

is complete.

Usually it is easier to verify conditions for the existence of [ fdA when A is symmetric.
The next proposition shows how to characterize the A-integrable functions f, using A-

integrability of f, where A is the symmetrization of A.

PROPOSITION 2.9. Let A’ be an independent copy of A and put A(A) = A(A) — A'(A),
AeS. Then for an arbitrary function f : S — R, f is A-integrable if an only if f is
A-integrable and the condition (i) of Theorem 2.7 is fulfilled.

PROOF: The Lemma follows immediately from Theorem 2.7 because

£ (A(A)) (t) = exp {/A [—ﬁo?(s) + 2/ (costz — l)ﬁ(s,dz)] A(ds)} ,

R
where p(s, B) = p(s, B) + p(s, —B), BeB(R). 1

ITI. CONTINUITY OF THE STOCHASTIC INTEGRAL MAPPING
AND IDENTIFICATION OF A-INTEGRABLE FUNCTIONS

In this section we shall identify the set of A-integrable functions as a certain Musielak-
Orlicz modular space, and shall prove the continuity of the mapping f — [ s fdA from
this modular space into L,(f, P). In addition, under certain conditions on A, we shall
show that the inverse of this map is also continuous. We also point out that these results
on stochastic integrals unify and extend the corresponding results of {23, 29, 30]; further,
using these results, we show that one can easily recover, in a unified way, the results
concerning stochastic integrals and the space of A-integrable functions obtained in (2, 7,
20, 27);

We begin with some preliminaries. Let ¢ be a non-negative number such that

(MC)  E|A(A)]" <oo,  for all AeS.




:::\: . Throughout this section, we shall assume that the above condition is satisfied and ge [0, o0)
is fixed (note that every A satisfies MC with ¢ = 0). Hence, using the standard fact which
states that for an ID distribution u with Lévy measure G, [ |z|71(dz) is finite if and only
3 if f{l=l>1} |z|9G(dz) is finite, we have

(- / [/ |z]qp(s,dx)] A(ds) =/ |z|7Fa(dz) < o0,
' A lJyzi>1y {1z|>1}

%)
?..:‘ for every AeS (recall F4 is the Lévy measure of £ (A(A))). Hence X-a.e.
b1
e (3.1) / |z|%p(s,dz) < 00.
. {iz[>1}
f.::’ Thus, without loss of generality, we may (and do) assume that (3.1) holds for all seS.
) Define, for 0 < p < ¢, ueR and seS,
&.
J‘ »
(3.2) ®,(u,s) = U*(u,s) + u?*(s) + Vy(u,s),
o
: *‘: , where
.-l“
R) 2
i‘ U*(u,s) = sup |U(cu,s)|
e, lel<1
>3
5!
and
L
gt
3 oo
Vo(u,s) = / {{luzlPI (juz| > 1) + |uz[*I (juz| < 1)} p(s, dz) .
7 —o0
'_’, Next we state and prove two lemmas which will be needed for the identification of the
>
e space of A-integrable functions as well as for the proof of the continuity of the stochastic
Af integral mapping and its inverse.
j::::'. LEMMA 3.1. The following are satisfied:
- (i) for every seS, ®,(:,s) is a continuous non-decreasing function on [0, c0) with ,(0, s)
7*; =0
(i) A({s: ®p(u,s) = O for some u = u(s) #0}) =0,
f‘_:: (iii) there exists a numerical constant C > 0 such that
.
) ®,(2u,s) < CPp(u,s),
1]
bl for all u > 0 and seS.
=
N"
"y 16
b
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)
i
' .
b ,'\’.l"'
) ' PROOF: It is easy to prove that U(-, 8) is continuous; using this one proves as easily that
‘(g{ U*(-,s) is also continuous. Using this fact and the Dominated Convergence Theorem, we
h establish the continuity of ®,(-,s). To see that ®,(-,s) is non-decreasing we observe that
“:1'.;: U*(-,s) is non-decreasing and, for each fixed u,
Y

min {|zu|?, |zu|? ifo<p<
(3.3) luzPI(|zu| > 1) + |zu|?*I(jzu] < 1) ___{ {|zul?, |zu]?} i o<p<2}

max {|zul?, |zu|*} ifp>2

\‘ is increasing in z > 0. Now we prove (ii). If ®,(u,s) = 0, for some u = u(s) # 0, then
S p(s,R) = 0, 6%(s) = 0 and U(u,s) = 0. By the definition of U(u,s), we get a(s) = 0.
o Therefore,
v S, = {s: ®p(u,s) = 0 for some u = u(s) # 0}
',E“:' = {s:a(s) = 0%(s) = p(s,R) = 0}.
ja'._; (Note that above equality also establishes the measurability of S,). Let A be any measur-
h> able subset of S,. Since v,(A4) = [, a(s)A(ds) = 0, we get |v,|(S,) = 0. Thus
b A(S,) = |¥,1(So) +/ o?(s)A(ds) +/ min{1,|z|*}p(s,dz) =
\ a So So
s::\ To prove (iii), we use Lemma 2.8 and (3.3), and get
¢
2 ®,(2u,s) < 2|U(u,s)| + 27V, (u, ) + 4u2o?(s) + (2 + 4)V,(u, )
o < (27 + 31),(u, 5).

- -
.

o

LEMMA 3.2. Let {un} be a sequence of ID. prob. measures on R with Lévy repre-

G

sentation: p, = (an,02,G,). Assume pu, — §,; equivalently, a, — 0, 02 — 0 and

! i}: [2_min{1,|z|?} dG, — 0. Then, for any b > 0,

X

.:_: / lz]b”n(dx) - 0 <= |Z|bGn(dI) — 0.
':_ R {Iz|>1}

: (It is, of course, assumed here that [ |z|’du, < oo (and hence f{]zl>l} |z|Gpn(dz) < 00),
o for all n).

PROOF: Under the hypothese of the Lemma, it is easy to prove that

;-:} (3.4) lim sup / 12[° G (dz) = 0 <= lim |2[Gn (dz) = O,
o t—oo p {Iz|>t} {lz|>1}

. and

" 1 “p "' M CRLLTF IRV ORY '.\)'y

'(' "' ,lotil’.“"f“‘." ."»'.I. AN N y

n‘al



Pl
aa
D B

. )
A"..'" fxtets
eSS

EAEL
MUSRR R
A AA

e
(%
P AAS

gt

A &y
LA

P
a

A 4
LA AL

t—oo g

(3.5) lim sup/ |2|%un (dz) = 0 <= lim |z|%un(z) = O.
{lz|>t}

" J{izl>1)

Now assume f{|;|>1} |z|®Gn(dz) — O, hence, by (3.4) and Theorem 2 of [10], (note that
{un} is compact) lim;_, o sup, f{izl>!} |z|’un (dz) = 0. Thus, by (3.5), f{|z|>l} |z|un (dz)
— 0. But, as y, ~ §,, we have f{}z|51} |z|®un(dz) — 0. This proves Jr |z%8n(dz) — 0.
Conversely, if fR|z|bun(dz) — 0, then, by (3.5), lim;_. sup, f{|z|>t} |z|’un(dz) = O.
Thus by {10] again, lim;_. o sup, f{ltl>t} |z|Gn(dz) = 0; which along with (3.4) imply
that lim, f{|z|>l} |z|*Gn(dz) = 0. B

In order to get ready to state and prove our first main result of this section, we will need
a few more notations and definitions:

We define the so-called Musielak-Orlicz space

Lg,(S;A) = {feLo(S;A) : /S<I>p (1£(s)],s) A{ds) < oo}.

The following properties of Lg,(S;A) (which are well-known for general Musielak-Orlicz
spaces generated by functions which satisfy (i), (ii) and (iii) of Lemma 3.3) will be used

throughout this paper: The space Lo, (S;A) is a complete linear metric space with the
F-norm defined by

111, =inf {e > 0: [ @, ti7(s)].oIr(as) <.

Simple functions are dense in Lg (S;A) and the natural embedding of Lg,(S;A) into
L,(S;A) is continuous (here L (S;)) is equipped with the topology of convergence in A
measure on every set of finite A-measure). Finally, ||falle, — 0ifand only if f¢ ®,(|fn(s)|,s)
A(ds) — 0. For these and further facts concerning Musielak-Orlicz spaces, we refer the
reader to [16].

THEOREM 3.3. Let 0 < p <gq and ®, be as in (3.2). Then

/sfdA

{f : f is A-integrable and E

P
< 00} = LQP(S;A),

and the linear mapping

Lo, (S;2) 3 f o / fdA € L,(0; P)
S




is continuous (note that p = O here signifies that Lg_(S;A) = {f : f denotes A-integrable}).

PROOF: Let f € Lo (S;)); ie. [3®,(f(s)],8)A(ds) < oo. Then, it is easy to see that
the conditions (i), (ii) and (iii) of Theorem 2.7 are satisfied, so, f is A-integrable. If Fy
denotes the Lévy measure of B(fs fdA) (see Theorem 2.7), then we have

. ulPF¢(du) = z|Pp(s,dz)| A(ds
(3.6) /Wu 7 (du) /s[/{.,(.,,|>l}""’ P (s, dz) | A(ds)
< [ &, 2(ds) < oo

and, consequently, E Us jdA|p < 00.
Conversely, assume that f is A-integrable and E Us fdA|p < 0o. By Lemma 2.8 and (i)
and (iii) of Theorem 2.7, we get

/sU (1f(s) ds)</ U(f( ds)+8/;V(f(s),s)z\(ds)<oo.

Since E | [, fdA|” < oo, we have f{lul)l) |z|PFy(dz) < oo; hence, by (3.6) and (iii) of
Theorem 2.7, we get

LVp(f(s),s)A(ds) < /{iu]>l} |z|P Fy(dz) + /;Vo (f(s),s) A(ds) < o0

Combining the above and (ii} of Theorem 2.7, we get f € Lo, (S; A).
Let fo = 0in Lg_(S;A); i.e

(3.7) /s p ([fn(s)],5) A(ds) — 0 as n — oo.

Let an, 02 and F, be, respectively, the centering constant, the variance and the Lévy
measure in the canonical representation of the ch. function of £ (fg fndA) (see (iv) of
Theorem 2.7). Then (3.7) implies that a, — 0, 02 — 0 and

/R {izP1(|z| > 1) + 221 (|z| < 1)} Fa(dz) — 0,

as n — oo. Thus, in view of Lemma 3.2, Elfs f,,dA)p — 0,as n — oo if p > 0; and, if
p =0, then clearly [¢ fndA — 0in prob. 1§
We shall study now the conditions under which the mapping f — fs fdA is an isomor-

phism. First we note that, in general, this mapping is not one-to-one. Indeed, if A(ds) = ds

19
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is the (deterministic) Lebesque measure on S = [0, 1], then obviously f — fol f(s)ds is
not one-to-one. In view of this, one needs to impose some suitable condition on A (or
on some of its parameters) which, on one hand, alleviates this difficulty and makes the
mapping an isomorphism but, at the same time, is weak enough so that it is satisfied by
a large class of ID r. measures. We found the following condition quite satisfactory with

regard to these criterions; we refer this as (IC) (I for isomorphism, condition:

There exists a constant C = C(p,q), 0 < p<yg,
(IC) such that for every u >0
[U(u,s)| < C {u?o?(s) + Vy(u,s)} ae [A]

The following is our second main result of this section.

THEOREM 3.4. Let (IC) be satisfied for some 0 < p < q. Then the mapping f — [¢ fdA

is an isomorphism from Le _(S; ) into L,(Q; P). Moreover,
PROOF: By Lemma 2.8 and (IC), we get, for every u > 0,

U*(u,s) <|U(u,s)| + 8V, (u,s)
(3.8) < Cy {u?o?(s) + Vp(u,9)}

a.e. [A}, where C| < C + 8.
Let E Us fndA‘p —0,if p>0or fs fndA — 0 in prob. if p = 0. By Theorem 2.7 (iv)

and Lemma 3.2, we have
/5 |fa(s)* o*(s)A(ds) = 07, 0

and

/Vp(fn(s),s)/\(ds) :/ {2IP1 (2] > 1) + 2|1 (2| < 1)} Fy, (dz) — O,
S R

as n -+ 0o, where a?n and Fy, are respectively, the variance and the Lévy measure in the

canonical representation of the ch. function of £ (fs f.,dA). Thus, by (3.8), we have

[SU‘(]fn(s)l,s)A(ds) — 0asn — oo.
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Therefore, [¢ ®, (|fa(s)],8) A(ds) — 0; ie., fu — 0 in Lg,(S;A). This proves the in-
vertability of the map f +— [ s fdA and the continuity of the inverse map.

Using the fact that simple functions are dense in Lg,(S; ) and that

lin{A(A): A€ §} = {/ fdA : f is simple },
s

the proof of the last statement of the theorem is easy.

Corollary 3.5. Let (IC) be satisfied for some 0 < p < g and [ fndA — 0 in L,(Q}; P).

Then f, — 0 in A on any set of A-finite measure.

PROOF: It follows from Theorem 3.4 and the earlier noted fact that the natural embedding

of Lg, into Lo(S;A) is continuous. 1

The (IC) condition is imposed on certain parameters of A and not directly on A; this
limits the usefulness of Theorem 3.4 somewhat. Thus, it is desirable to find sufficient con-
ditions directly in terms of A which guarantee (IC) and hence also the fact that the integral

mapping is an isomorphism. We shall provide such sufficient conditions in Propositions
3.6 and 3.8.

PROPOSITION 3.6. The condition (IC) is satisfied under any of the following two hy-

potheses on the ID r. measure A and the real number p:

(i) A is symmetric and 0 < p < q arbitrary,
(ii) E[A(A)] =0 forall Aand1<p<yqg.

PROOF: That (IC) holds under (i) is trivial, since in this case a(s) = 0 and p(s,') is
symmetric, which implies that U(-,s) = 0 a.e. [A\]. Now we prove that (IC) holds under
(ii). Since E |A(A)|? < 00, ¢ > 1 and E {A(A)} = 0, we have

~

L (A(A)) (t) =exp {—%tzul(A) + /R (e'® - 1 - itz) FA(dz:)}
(3.9) = exp {ituo(A) - %tzul(A) + /n (e'® — 1 —itr(z)) FA(dz)} ,

where v, (A) = [ [7(z) — z] Fa(dz). Hence, by Proposition 2.5, a.e. [A],

(3.10) a(s) = /R (r(z) — z) p(s,dz) and U(u,s) = /R (r(uz) — uz)p(s,dz).




T
,s:_;u
N
Hh :\
ﬁ"_:" . Thus we get, for every p > 1,
R
AN
B |U(u,s)| < / |7(uz) — uz|p(s, dz)
W, 7 {luz|>1}
e
o < / luzip(s, dz) < Vp(u,s)
: :.: {luz[>1}
r?*
) a.e. [A], which concludes the proof. §
; ,S As we noted in Section II, our definition of stochastic integrals is the same as advocated
4 .h i
ot first by Urbanik and Woyczynski {30] and Urbanik [29] and later adopted by Rosinski
30,‘ {23]. Thus our results on stochastic integrals of real functions relative to arbitrary ID r.
sy measures do unify and extend the pertinent results of these authors. Another approach
\: of defining stochastic integrals relative to symmetric S(a), and symmetric S(r,a) and
¥ 5--‘4!'
N centered S(r,a), r. measures A have been taken in (2, 27| and [20], respectively. In these
.:' papers, the integral f fdA is defined as L,-limit, 0 < p < a, of a sequence of integrals of
" simple functions relative to A; and it is shown that the space of A-integrable functions is the
'-::'."’_' La(A)-space and that the integral map Lo()A) > f +— [ fdA € L,(P) is a topological and
j::i' linear isomorphism. The rest of this section is devoted to show that our integrais as well
'C
as the space Lg, of A-integrable function do coincide with those of [2, 27] and [20], when
A is symmetric S(a), and symmetric S(r, a) or centered S(r,a) r. measures, respectively;
- and, that the integral map satisfies the above cited property. Thus, we recover all these
- results of {2, 27, 20] in a unified way. Finally, towards the end of this section we point
™
D out certain facts about A-integrable functions for certain S(r,1) r. measures.
P If A is a centered S(a) (resp. S(r,a)) r. measure where 1 < a < 2, then E |[A(4)|? < oo,
':\ for any ¢ < a, and EA(A) =0, for every A € §. Hence the ch. function of A(A) is of the
;‘; form (3.9), where v; = 0 and F,4 is an S(a) (resp. S(r,a)) Lévy measure.
v If A is a centered S(a) (resp. S(r,a)) r. measure and 6 < & < 1, then
LI
o : |
3 1) EW) O = e { [ (e 1) Fatan)}
J‘:e R
AW .
— = exp {ituo (4) + / (€% — 1 —itr(z)) Fyu (dz)} ,
7 R
L)
o where v,(A) = [g 7(z)Fa(dz) and F4 is an S(a) (resp. S(r,a)) Lévy measure for every
Acr, A € §. Therefore, we have (see Proposition 2.5 and Theorem 2.7)
_f:: | (3.12) a(s) = / 7(z)p(s,dz) and U(u,s) = / T(uz)p(s,dz) ae. ()]
s R R
':;.j-
1 GO
P *
L
o |
= ‘
';\;_:._‘l;.:,-.;,:.}u;,-.}:;‘.‘,x;;-_’,‘-‘.’-’.'.'_-.'_-.'_-.'.‘-'.‘*:,,:.;,-.;.‘.','.}.:.:_'-'.‘-".'-'-'.;,:-' :::,.'-:,.'-;'-" ------ ?e,,:f'.)"'\:r:'? \»;,\-:.::' ::._\:,,' :r-:‘. " ) '\.:;x' \
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Finally, if A is a centered S(1) (resp. S(r,1)) r. measure, then A is symmetric and the
ch. function of A(A) is given by (2.1) with v, = v; = 0 and F4 being a symmetric S(1)
(resp. S(r,1)) r. measure, for every A € §S.

In the following lemma, we state the fact that the conditional Lévy measures p(s, ‘)
of S(a) (resp. S(r,a)) r. measure A are S(a) (resp. S(r,a)). The proof of this fact is
postponed to the next section mainly for convenience but also because this fact has more
relevance there. Formula (3.15) below follow from (3.14) by a standard argument. The
proof of (3.14) can be found in [20}.

LEMMA 3.7. (a). Let A be a S(a) r. measure. Then a.e. )]
(3.13) p(s,dz) = ey (s)I(z > 0)z™ ' %dz + c_1(s)I(z < 0)|z| ' ~%dz,

where ¢y,c_y : § — [0,00) are o(S) — B [0, 00) measurable.
(b) Let A be a S(r,a) r. measure. Then, for A almost all s € S,

o0
(3.14) p(s,B) = Z r"p(s,(r= B)n A) for all B € B(R),
n=-—-00
where A = {z ER:ra < |z| < 1}. More generally, for A-almost all s € S, the following

formulas hold

Jr f(2)n(s,dz) =Yt e T [ f(r " 2)p(s, dz),
(3.15) fm),g f(2)p(s,dz) =2, r ¥ [, f ('k_zlx) p(s, dz),
fltlsrf? f(z)p(s,dz) =2 v %[, f (rk—ﬁiz) p(s,dz),

for every Borel non-negative function f and an arbitrary integer k.

PROPOSITION 3.8. Let A be a centered S(a), or more generally, a centered S(r,a) r.
measure. Then the (IC) condition holds, for any 0 < p < a, and Lo ,(S;A) = La(S;2) up

to a renorming, for every 0 < p < a. Consequently, there are positive constants C; and

P\ + 1
<C *dA ,
) < 2(/s|f| )

PROOF: Since every centered S(a) r. variable is also a centered S(r,a) r. variable for

C, depending only on p, r and a such that

(3.16) o] W)* < (][ ran

for every f € Lo(S;A).

every 0 < r < 1, it is enough to prove the proposition for the case when A is a centered

S(r,a) r. measure.
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o First we shall bound U(u,s). If 0 < a < 1, then by (3.12), we have
.~‘
e (3.17) |U(u,s)] < / [r(uz)|p(s,dz) = ]u}/ |z!p(s,dz) +/ p(s,dz)
n R {lzI<lu[=1} {iz|>[ul~*}
.:j (for the sake of brevity we shall omit in this proof the phrase “for A-almost all s”). Let k
_:: be an integer such that ra < lu|=! < r*3*. Using (3. 15), we obtain
v / |z|p(s,dz) < / _ |zlp(s,dz)
£ {lzI<lul=1) {|zl<r“?‘}
1'\. K—1+i
X _ 3 ke [ s, da)
:: =0
| Szr(f;—l)(k—l+d)p(8,A)
"'_“ 1=0
: R
< o (s,A)[ul"‘];
Ny 1 -k
and, again by (3.15), we get
S / p(s,dz) / (s, dz)
R Gizi>lui=1) ety
C =i/ pls,dz) < ——p(s, A)[u[*
.u-_ ’ im1 A - 1- r ’ )
By combining the above and (3.17), we obtain
8 (3.18) |U(u,s)| < Da(s, A)|u|?,
» ¥ 1
::f: where D == r1~ (1 —ra” 1) +(1--r)7'. Let now 1 < a < 2. Then, by (3.10), we get
~
2 :
- (3.19) |U(u,s)| < / |7(zu) — zu| p(s,dz) < lt.l/ |z|p(s, dz).
X {lzu|>1} {Iz|>ul~*}
K = Let k be as above. Utilizing (3.15) again, we obtain
it
~
- / alos,d) < [, alo(s,da)
W {iz|>ju]"1} {lz/>r®)
2 =Sk [ (e, do)
q:‘:l =1 A
-3 -
2 <Y - D0-Rp(s, )
R i=1
[ < (1 —rl-#) p(s, A)ul*"1,
.
N
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which, together with (3.19), shows that (3.18) holds for all 1 < a < 2 with D =

. (l—rl"i)_l.
i Using (3.15) repeatedly, in a very similar way as above, one can find positive constants

D, and D,, depending only on p, r and a, where 0 < p< a,0<r <1land 0 < a < 2,

such that
: (3.20)
\ Dip(s, A)|u|* < Vp(u,s)

; = u2/ z2p(s,dz) + |u|”/ |z|Pp(s, dz)
) {lzu|<1} {lzu|[>1}

< Dyp(s, A)|ul®.
The condition (IC) follows now by (3.18) and (3.20) since, if a # 1,
\U(u,s)| < Dp(s,A)|u|* < DD;'V,(u,s).

If a =1, p(s,-) is symmetric and a(s) = 0; which implies U(-,s) = 0 and (IC) holds in
1 this case trivially.

Combining (3.18) and (3.20) we get, for every 0 < p < a and 0 < a < 2 (including
a = 1),
(3.21) Dip(s, A)|u]* < ®y(u,s) =U*(¢,s) + Vp(u,s)

< (D + Dz)p(s, A)u|*,

'”. "

where D = 0, if a = 1. We shall obtain now bounds for p{. ) utilizing (2.5); which, in
view of (3.10) and (3.12), reads

. {U(1,s)] +V,(1,8) =1, if o # 1,
and V (1,s) =1, if a = 1. By (3.18) and (3.20), we get
Dip(s,A) <|U(1,8)| + Vy(1,s) =1 < (D + Dj)p(s, A);

hence

(D + D;)~ ! < p(s,A) < DT
Consequently, by (3.21),
Dy(D + D3) Mu|* < ®,(u,s) < DT} (D + Dy)lul°.

’ This shows that f € Le, if and only if | f||2 = [ |f|*d) < oo and obviously the F-norms
f-lle, and || - [|fin“‘a} are comparable. Now, the inequalities (3.16) follow frem Theorem
3.4 and the Closed Graph Theorem. @
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;‘ Remark 3.9. If A is a S(a) (resp. a S(r,a)) r. measure and a # 1, then one can find a
:7;: (non-random) signed measure, say, A; such that A; = A — A, is a centered S(a) (resp. a
* centered S(r, @)) r. measure (see [20] for a similar decomposition of S(r, a) stochastic pro-
::;j: cess). Thus the stochastic integral with respect to A is equal to the sum of the stochastic
: integral with respect to A;, whose properties have been described in the previous propo-
_.-‘::'Z sition, and the usual Lebesque integral with respect to A;. Such a decomposition is not
\\ - possible if a = 1. However, if A is an arbitrary S(r,1) r. measure with v, = 0, then, using
_:'.:: (3.15), one can obtain the following bound:
NN U (u,s)| < Ap(s, A)|u| (1 + |(log [u])]),
N where 4 = max {2(1 )71, |logr| ! } By (2.5) we have V_(1,s) = 1, which implies, by
’_J (3.20) (which holds in the non-centered case with the same constants),
n:‘i;
r",._' D;ISP(S,A)SDI—I
‘ .
' _&:-‘_-:. Thus
Ny [U(u,s)| < ADT [u| (1 + |(log |u])]) .
\'_‘_:
( y Since u — u (1 + |log u]) is increasing on R, we get
_; U*(u,8) < ADT'u(1+ |logu|), u>0.
BN
E: Finally, by (3.20) and the above inequality,

Aju < ®p(u,s) < Au(l+|logul), u>0,

L3
v

P T I L

S

where A, and A; depend only on r and p < 1. We conclude that

)':'..

g

Llog L(S;A) - La,(S;A) € L1(S; ),

o

where Llog L(S; A) is the Orlicz space based on ®#(u) = u (1 + |log u|). This generalizes a
a5 result in [7], proven for the S(1)-case.

s IV. SPECTRAL REPRESENTATIONS

OF GENERAL DISCRETE PARAMETER ID PROCESSES

Let M be a S(a) Lévy measure on €; = £,(N); then, as is well known (13|, M admits
.{4 the representation:

o (4.1) M = (p, x 7,) 0 9.1,
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'_‘{‘E: where «, is a finite measure on U, the boundary of the unit ball in £;, p, is a S(a) Lévy
"‘.’;: measure on R and ¥, is the map: U x R* — {3 \ {0} defined by ¥ (u,z) = zu. It is
X , noted in (20, 21| that a representation similar to (4.1), can be obtained for any S(r,a)
- Lévy measure but one must replace U by the annulus A = {z : r3 < ||z|| < 1}. This
fact that M admits the representation like (4.1) plays perhaps the most crucial role in the
"\.‘ proofs of spectral representations of stable and semistable processes obtained in |2, 7, 8,
') 13, 20, 21, 27, 28|. The basic idea of all these proofs is as follows: Given a stable (resp.
,\'-E?;': semistable) process X = {X,} with paths in {2, one first represents the Lévy measure
Iy M of L£(X) as in (4.1), then one defines a r. measure A on AU (resp. on A) (or via a
e Borel isomorphism on some other Borel subset of a complete separable metric space) with
o control measure

\* Fa(B) = v,(4)p,(B);

::_:. and, finally by choosing suitable functions f,, one shows that

¢: (4.2) { /S f,,dA} 2 (X,).

2N

_\ Further, using some continuity arguments, one obtains representation like (4.2) for contin-
( § ‘ uous parameter stable and semistable processes.

$: In order to apply a similar approach to obtain spectral representations of general ID
! " processes, it is thus necessary to obtain a suitable representation, similar to (4.1), for an
:.. arbitrary Lévy measure M on ¢;. In order to make sure that the r. measure A retains
:) properties similar to those of the given ID process X, it is important that this representa-
?:C tion be such that both F4(-) and p, inherit properties of M (the Lévy measure of £(X));
)‘{: e.g., if M belongs to a known class (say stable, semistable or self-decomposable) of Lévy
> measures on £; then F4(-) and p, belong to the same class of Lévy measures on R. That
= such a representation is possible is shown in Theorem 4.2. As we will see, this representa-

"E tion helps us obtain spectral representations of most ID processes in a unified way which
:E’, include and extend, to a large degree, all known spectral representations to date of various
Ll special ID processes.

'.h_: We begin by introducing some notations and conventions which will remain fixed through-
"':: out thsis section and the nezt, unless explicitly stated otherwise.

; - The notations U and W, are as above: U = {zel; : ||z|| = 1}; ¥, : U x Rt —s
€3 \ {0} is the Borel isomorphism, defined by, ¥, (u,z) = zu (note ¥ !(z) = (ﬁ, |]z||)),
-: ' the natural (Borel-measurable extension of ¥, to U x R , we denote, by Wo, where
: 27

o3

o

& o i S
O I AN S S E I O S P PO, AR AR




-"\
..\
5
g
:E: R, = R\ {0} and, as noted before R* = (0,00)). Next we denote, by S, an arbitrary
:::T uncountable Borel subset of a complete separable metric space, by ¢, a Bore!l isomorphism

3 from AU onto S, (see Theorems 2.12 and 2.8 of [17]) and, by I, and ¥, respectively, the

o Borel isomorphisms from 38U x R* onto § x R* and from S x R* onto £3 \ {0}, which
v

are defined by

~\ I (u,z) = (p(u),z) and ¥(s,z) = 2~ (s).

: - Finally, we denote, by Iw the natural extension of I, to dU x R, and, by V¥, the natural
:" extension of ¥ to S x R,. (Clearly, I, is a Borel isomorphism onto § x R, and ¥ is a
:3_ Borel measurable map onto £; \ {0}). To keep easy track of these maps, spaces and the
e

™, measures (to be defined in the following), we found the following (commutative) diagrams
useful:

b v, v,

s t;\ {6} —— 8U x R* £\ {6} —— 68U x Ry

D>

° ,,l ;o 7'”1_-,

Y \ I v .i\ *

e S x R* S x Ry

o

(.. Diagram 4.1

:3’, Now we shall define certain measures related to a given Lévy measure on £;; notations,

:-r used for these measures, will also remain fixed throughout this section.
s

O Given a Lévy measure M on {3, the finite measure I’ on B(8U x R%), defined by,

@)

o (4.3) I,=M,0V¥,, where M, (dz) = min(1, ||z]|*) M (dz),

:::g can be represented, by Proposition 2.4, as

o

> (44 r(©) = [ ([ ol zlatunda)) v (au),
:'_' 144 R+
K- where ¢ : U x B(R*) — |0, 1] satisfies conditions analogous to (d) and (e) of Proposition
fj£ 2.4, and 4, is the finite measure defined by

(4.5) WA= TAx R = [ min(, z]%) M (d2),

{=: 7254}
:;:".- for every AeB(9U). Now, we define the measures vy on B(S), p(s,:) on B(R*) and F on
K- B(S x R*) by

".; (4.6) Y=q,0p 1, p(s,dz) = [min(1,|z/?)] ! g (v7(s),dz),

A

o

N
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for every seS, and

(4.7 For- [ (/| To(s,2)0(s,dz) ) 1(ds),

for every CeB(S x R*). If M is symmetric, then I';(A x B) = T, (—A x B), hence, in
particular, 7, is symmetric (and we denote it by 7 ). Using these and (4.4), we can and

do assume that ¢(:, dz) chosen above is such that, for all uedU,
q(u,dz) = ¢(—u,dz).

Consequently, if M is symmetric, the measures p(s, -) satisfy:

(4.8) p(p(u),dz) = p(p(—u), dz),

for all uedU. In addition to the measures p(s,-), ¥ and F, in the symmetric case, we also

associate (to M) the measures 5(s,-) on 8(R,) and F on B(S x R,), which are defined by

(+]

the formulas:
(4.9) p(s,dz) = 3 [p(s,dz) + (—1) - p(s, dz)],

for all seS, and

(4.10) F(C) = /S (/;

for all CeB(S x R, ), where (for reasons to keep similar notations in the symmetric case) we

Ic(s, z)p(s, dz)) 7 (ds),

write § for 4. (As we noted in Section I, we will assume that p (s, -) are naturally extended
to R, (or to R) and we will use the same notations for the extended measures. Similar
remark applies to the measures p(s,-), and to the measures F4(-) and F 4(-) which are
defined in Lemma 4.1 (iii)).

In the following lemma, we collect a few facts about some of the measures defined
above; the proofs of these facts are rather straightforward. But we record these facts here

for clarity and ready reference.

LEMMA 4.1. (i) The functions p and p satisfy analogs of (d) and (e) of Proposition 2.4.

(i) The measures p(s,-) and p(s,-) are Lévy measures on R; in fact, for all seS,

(4.11) min(1,|z|?)p(s, dz) = / min(1, |z|?)5(s,dz) = 1;
R+ R
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k}é : further, the measures 5 and p(s, ) satisfy:
o
. (4.12) (-1)-Fop=Fop(=7,),
.
:}:‘ and
oG
o834 (4.13) p(p(v),dz) = p(p(-u),dz) and p(s,dz) = (1) - p(s, dz),
\
-5.'_’\ for all uedU and seS.
W _'\-\ —_ —_
N (iii) The measures F4(-) = F(A x -) and F4(+) = F(A x ‘) are Lévy measures on R; in
:"; fact,
o (4.14) min(1,z%)F4(dz) = v(A) and / min(1,z%)F 4 (dz) = F(A),
7 * o
;‘_ for all AeB(S); further, F4(-)’s are symmetric and F satisfies (the condition of
0 symmetry):
L.
(4.15) F(,(C)) = FI,(-C)),
for all CeB(AU x R,).
,\_.__ (iv) For every CeB(3U x R,),
N3 (416)  F(,(C)) =} [F (I, (C N (3U x BY))) + F (I, (-C n (3U x RY)))]

(here F, F are the measures defined by (4.7) and (4.10) associated to the same

PO R -
- -( ) [ U
'-.I..l .'l‘l‘

- symmetric Lévy measure M).
f.: PROOF: The proof of (i) is clear by definitions; proof of (4.11) follows from the fact that
e g{u, R*) = 1, for all uedU. The proofs of (4.12) and (4.13) follow, respectively, from (4.5),
“-. (4.6) and (4.8), (4.9). That (4.14) holds is a consequence of (4.7), (4.10) and the fact that
E: g(u,R*) = 1. That F 4(-) is symmetric is clear from (4.10) and (4.13); to see that (4.15)
;: holds, we observe:
»

4 Flio(C)) = / ( /R Ii,,(c)(s,x)?’(s,df)) 3(ds)

. 1.0

I, (c) (o(u), ) 7’(90('1),475)) 7, (du)

o]

oy (recall, from (4.12), ¥ = §_ o ¢~ '), which, by (4.12) and (4.13),
s
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f;j . = / (/ If,, ©) (o(—u), —z)ﬁ(p(—u), d:l:)) Yo (du)

(O au \/r,

-/ ( [ hco (so(u),z)ﬁ(so(u),dz)) 7, (du)
au \ /R,

‘:.: = / (/ L —c (s,z)ﬁ(s,dz)) ~(ds)

: S R

o

! ::-_ = F(I,(-C)).

! \' )

r'.“a Finally, we prove (4.16); we observe, from (4.9) and (4.10),

S -

- F{ () =1 l:/; (/; Il—v(c)(s,z)p(s,dz)> 7 (ds)

o °

> e

=2 + ( | hoea) -1 p(s,dx)) 'ﬁ(ds)]
R i s \/R,

: = % [/ (/ II,,,(Cn(aUxR‘*))(s’I)p(ssdz)) 3 (ds)
S s \JRr+

- N A —

= = 1F (I, (CNn (38U x R*)))

V(L s o)
% =1F (I, (Cn (8U x R*)))

2 w4 [, ([ e el -2pel-0.0) 5,00
'f“-: = 1F (I, (Cn (38U x R*)))

N (using (4.12) and (4.13))

1F (I, (€N (3U x R*))) + 1 (I, (-=C N (3U x R))) . 8

Now we are ready to state and prove our promised result providing the useful represen-

tation, similar to (4.1), of an arbitrary Lévy measure on £;.

i THEOREM 4.2. (a) Let M be a Lévy measure on ly; then F is the unique measure on
B(S x R%) satisfying

’—1 .
:‘é& (4.17) M=FoW¥}
\
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(hence, from (4.7) and (4.17)) we have the desired representation of M : for every DeB(¢;)\

N
"y
B
"N {o}),
re
~l

(4.18) M(D) = /s (/R+ Ip (zp7'(s)) p(s,d::)) v (ds);
' more generally,
‘5 (4.19) /e,\m} fdM = /s( . f(zp‘l(s))p(s,dz)> ~v(ds),

whenever either f > 0 or ft,\{O} |f|dM is finite, in the second case f can be complex.
(b) If M is symmetric, then F is the unique measure on B(S x R,) satisfying the
symmetry condition (4.15) and

(4.20) M=Fo¥ '

and, in addition to (4.18), M also admits the representation:

) (4.21) M(D) = /S (/R

ri P AT S e o

I (z07(s)) ﬁ(s,dz)) 5(ds),

0

{
. for every DeB(€; \ {0}); and the analog of (4.19) also holds.
: PROOF OF (a): From (4.4), (4.6) and (4.7) we have, for any CeB(S x RY),
, FE) = [ ([, 1etep (o) do)) 2,00
: -[( / Telp(4),2) [min(1,2%)] " ou,d) ) 7, (dw

" // Ic(p ) [min(1,z )]_ldl‘0

U xR+
:.E = // 11;1(C)(u,1’) [min(l,zz)]_l dl‘n.
8U x R+
? On the other hand, for any DeB(¢; \ {0}),
4
: . -1
: M(D) = [ [min(1, %) " am,
~ = // Iv;l(D)(u,I) {mm(l,lz\z)} ! dra,

d AU xR+




r—v—tf—vww—vw—vT-—rwm'IT

by (4.3) a..! the change of variable formula. Hence, since I;'oW~1(D) = (¥ol,)"!(D) =
. ¥~ }(D), we have M (D) = F (¥~!(D)); proving (4.17). The proof of (4.18), as noted in

o

the statement of the proposition, now follows from (4.7), the change of variable formula

2 and the fact that W(s,z) = zp~1(s). The proof of (4.19) follows from (4.18) and the
::" standard limiting arguments (see, e.g. |1, p. 104]). Finally, the proof of uniqueness of F
o is trivial, since the map ¥ is a Borel isomorphism between S x R* and ¢, \ {0}.
:::'_t PROOF OF (b): To prove (4.20), we use (4.16) and the facts ¥ = Woof;l and ¥ = ¥ ol !
:'; (look at the Diagrams 4.1). Thus, for any DeB(¢; \ {0}),
Iy = (3 1
. F (w (D)) =F (Ip (‘1’0 (D) )
-:'.: _1 -1 +
i =1 [F (1, (¥, (D)n (8U x RY)))
> +F (1, (-%5" (D) n (3U R+)))]
$ — L IF (1, (8(D)) + F (I, (¥, (- D))
zf-;.{; — LF(¥7'(D)) + }F (¥7(-D)
7 = ; [M(D) + M(-D)] = M(D),
(
- (by part (a) and symmetry of M). To see the uniqueness of F; suppose F, is some other
,, measure on B(S x R,) satisfying F1(I,(C)) = F; (I,(~C)) and M = F, oW . Then, for
any DeB(2\ {0}),
@)
<
:'.".: — [—=1 —
I M(D) = Fy (§7'(D)n (S x R*)) + F1 (¥7' (D) n (S x R7))
:‘::. = , = (7 (73—
=F, (¥"Y(D)) +F, ( g,(wo (D) (8U x R )))
2 =F (¥7'(D) +Fi (I, (¥, (-D) n (8U x RY)))
o~ = Fy(¥71(D)) + Fy (1, (¥, (-D)))
e = Fi (¥ YD) +F, (¥71(D))
. - 2F, (¥~Y(D)),
x,:: where we used the symmetry condition of F; twice and the facts ¥ = ¥, OI-;‘;l and
‘ ¥ - ¥, ol ' Thus F, (¥~!(D)) = 1 M(D); consequently, using uniqueness of F of part
N _
i\ (a), we have F; — 1F on B(S x R*). Using this, (4.16) and the symmetry condition of
o
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F,, we have, for any CeB(S x R,),

Fy(I,(C)) =F,(I,(C)n (S xR*))+F, ([,(C)n (S x R7))
Fy(I,(Cn(8U x RY))) +F, ([, (-C n (38U x R™)))
F(I,(Cn(dU x R*))) + 3F (I, (-C N (8U x RY)))
Tl

C));

consequently F; = F on B(S x R,). The proof of (4.21) is now a consequence of (4.10),

I

+
+

1
2
=F(I

change of variable formula and the fact that ¥(s,z) = zp~!(s); finally, the proof of the
analog of (4.19) follows as noted in part (a). i

As we noted in the introductory remarks of this section, our representations of the
Lévy measure M, obtained in the above theorem, is quite satisfactory with respect to the
question: Do the measures p(s, ), 5(s,-), Fa(-) and F 4(-) inherit properties of M? We
address this question in Proposition 4.4 for three important classes of Lévy measures M;
and show that M belongs to a fixed class of Lévy measures on £; if and only if p(s,-)
belongs to the same class of Lévy measures on R, for almost all s; similar result holds
when p (s, ) is replaced by any of the other three measures. The methods of proof of this
proposition suggest that one can possibly prove similar results for other classes of Lévy
measures.

To facilitate the presentation of this result, we first introduce few more notations, and
then prove a lemma which will be needed for the proof of the proposition. The contents
of the lemma are essentially known but there is no single source to which reference can be
made. For this reason and for completeness we include this lemma.

Let H denote a finite or infinite dimentional real separable Hilbert space. Then, we
denote, by M;(H), the set of all S(r,a) Lévy measures on H, by Ma(H), the set of all
S(a) Lévy measures on H and, by .M3LH), the set of all SD Lévy measures on H. We

recall that, for a given Lévy measure M on H, the following are well known:

(4.22) MeMy(H) <> rM =r= - M,
(4.23) MeMy(H) <= tM =t - M, and for all te (0,1],

(4.24) MeM3(H) <= t-M < M, for all te (0,1].

We also recall that if u is and i.d. measure on H with Lévy measure M; the Lévy

measures of u’®, the s-th roots of u, and s u, s > 0, are, respectively, sM and s - M. We

» - e . IR o e, R T a - LR I T RIS U - ca -',- -. A AL Y L]
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will use these facts in the proof of the lemma below. Now we are ready to state the lemma,
which says that the interval (0, 1] in (4.23) and (4.24) can be replaced by any countable

dense subset of it.

LEMMA 4.3. Let M be a Lévy measure on H and T any countable dense subset of (0,1],
then MeMy(H) (resp. MeMs(H)) <= tM =t= - M (resp. t - M < M), for every teT.

PROOF: Let u be the prob. measure on H with the ch. function
(4.25) i(y) = exp /H (c“"” -1- i(r(z),y)) M(dz).
Now assume tM = ta - M, for all teT. This implies (use ch. functions)
(4.26) pt=te -pusbyy,  forall teT,

where z(t)eH. Now let t, be an arbitrary element of (0,1), choose a sequence {t,} from T
such that t, — ¢ ; then t,% w0 t(,t -u and, by the continuity of {u® : s > 0}, putr 5 pto,
Hence, using (4.26), we also have 62(tn) = 6,(,0). Showing uto = ts’- T 5:(10); thus we
have p! = ta - p 6z(t), for all t. Hence tM = ta - M, for all te (0,1], or MeM2(H). The
converse part of course is trivial.

The proof in the self decomposable case is similar: The condition t - M < M, for teT,
implies M =t-M + M,;, where My = M —t- M is also a Lévy measure (as 0 < M; < M).
This, in turn implies: u = t - u * vy, for all teT, where u is as in (4.25) and v; an i.d.
measure with Lévy measure M;. Now, as in the above proof, it follows that u =t - u * vy,

for all te (0,1]. This implies M >t - M, for all te (0,1].

PROPOSITION 4.4. Let M be a Lévy measure on {;; and p(s,:), Fa(:) and v be the
measures related to M as defined prior to Proposition 4.1. Then, for any fixed 1+ =
1,2,3, MeM;(H) <= off a y-null set, p(s,-)eM;(R) <= Fa(-}eMi(R), for all A¢B(3U).

PROOF: Throughout this proof, we denote by A, B and D the generic elements of B(aU),
B(R™*) and B(¢; \ {0}), respectively. First we observe, from (4.18), that for any a > 0

(4.27) a-M(D) = / (/m I,-1p (zp7(s)) p(s,d:z:)) v (ds)

S

- /s </R+ Ip (azp "'(s)) P(S,d:c)> ~ (ds)
- /s (/m Ip (zp7'(s)) a- p(s,dz)) ~ (ds);

and, if D = ¥(A x B), then (recalling ¥~!(z) = (cp (”—:”) ,|]z”) we get, from (4.27),

35




ol (4.28) at-M(l?):/S(/R+ IAxa(s,z)a-p(s,dz))'r(dS)

| = [ (][ taarsstor2dots,d2)) v (a9

"‘ =/ p(s,a”lB)'y(ds)
; A
B0 = a- F4(B).

Further, for such a D,
¥ (4.29) aM(D) = /S ( /R o (207 (s)) ar (s,d:r)) v (ds)

= [ ([, taxp (0:2) aplor2) ) 2 (0

ol = aF4(B).

::3 Now we are ready to prove the proposition for s = 1. Let MeM;(H); hence, by (4.22),
o rM = ra - M. Therefore, by (4.28) and (4.29), rF4(-) = r3 - F4(), for all A; show-
N‘_: ing Fa(-)eM;(R). Now let Fu(-)eM;(R), for all A; then, from (4.28) and (4.29) again,
“‘3 ro(s,B) = ra - p(s, B) a.e. [4], for every fixed B. But, as B(R) is countably generated,
l' - rp(s,dz) = ra -p(s,dz), off a y-null set. Showing p(s, )eM(R), off a y-null set. Finally, if
:: ' p(s,-)eM (R), off a 4-null set, we have, from (4.27), that rM = rs - M or that MeM,(¢;).
z'-j Now we consider the case 1+ = 2. In view of the arguments used above, the only part
';. that needs a justification is the proof of F4(-)eM2(H) implies p(u,-)eMz(R), off a y-null

A®,

set. Let T be a countable dense subset of (0,1]. Then, assuming F4(-)eMz(H) and using

.z: (4.28) and (4.29) and the fact that B(R) is countably generated, we have, for every teT,

Lo tp(s,-) = ta - p(s,-) off a y-null set N,. Hence, same is true, for all teT, off the v-null set

:: N = U,.r N:t. Therefore, by Lemma 4.3, p(s,-)eM2(R), for all s ¢ N.

Finally, we consider the case 1 = 3; once again the only nontrivial part is to show
“: p(u,-)eMz(R) off a v-null set assuming Fu(-)eM3(R), for all A. To prove this let F4(-)e
- M3(R), for all A; and lev 4 = {(s,t), 0 < 8 <t < 00,s,t rational} and T be a countable
o dense subset of (0,1). Then, for every fixed t and BeA, we have

b1 t- Fa(B) = / t-p(s, B)y(ds) > /Ap(s,B)'y(ds) = F4(B),

e A

e

L7 for all A. Hence, since p(-, B) and t - p(-, B) are finite and T and A are countable, there
- exists a y-null set N, such that if s ¢ N, then t-p(s, B) < p(s, B), for all BeA and all teT.
E'. This, along with Lemma 4.3, show p(s, -)eM3(R) (note p(s, R,) =0), off the set N,. 1§
e
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\:_-.

: ’ REMARK 4.5. If M is symmetric, then exactly the same proofs as above show: For every

v fixed s = 1,2,3, MeM;(H) & 5(s,-)eM;(R), off a -null set < F 4(-)eM;(R), for all A.

o
N Now we are ready to obtain the main results of this section; namely, the spectral repre-
--‘.‘

e sentations of various i.d. discrete processes. We begin with a few more necessary notations

o and definitions:

\

oo Let u be an ID prob. measure on £, with the Lévy representation: p ~ {z,, K, M|,
>
f{; where z ¢f;, K is the covariance operator and M is the Lévy measure of x4 (which will
~ always be assumed symmetric if u is symmetric). Let K(y) = E,‘ B (e5,y) e, where

Bj >0, 3°;B; < oo and {e;} is an orthonormal set in ¢;. Define the finite measures 7,,

'_-::'-'_: Uy on U and v,, vy on S by:

e
SO

o Iz, 6 it 2070

- F4 3 s 1 20
@ - ° {Txoﬂ} - 5
g v, = ’ Ul_zﬂ] {e;}>
.\. 0, if 2, = 0 J

o and

(

o _ = -1 -z -1
- Vo =V,00 h=viop ".

h-.::

- L

N‘

9) Let A be the ID r. measure on (S, B(S)) with parameters (v,, v;, F) (see Proposition 2.1),
o we will refer to A as the associated r. measure of u or of [z,, K, M|. If x4 is symmetric
.-:f (hence M is also symmetric according to our convention), then the r. measure A with
_::' parameters (0, vy, f.) will also be referred to as the associated r. measure of u or of
»: [0, K, M]. (Here of course, F. and F. are the Lévy measures on R as in Lemma 4.1). In

! =" . . . . . . .
:j-:.j order to keep similar notations, we will write v for the measure v defined in (4.6); and, in
l": A the symmetric case, we will use the notation U; for v; and U for v. Note that the control
-;'.'.:;' measures of A and A are, respectively, given by A = v, + v; + v and A = Uy + T (see (2.3)).
N The above notations and conventions will remain fixed throughout this and the next
:::};j section; in addition, we will denote, by 7,, the n-th coordinate projection on ¢; and, by
:‘ gn, the Borel map on S defined by gn(s) = 7n(¢o~!(s)). In the following lemma, we record
:_ three integral identities, these will be needed in the sequal. The proofs of the first two are
:-‘_::3 straightforward and the proof of the last is a direct consequence of (4.19).
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LEMMA 4.6. Let a,,a,,...,a, be n-real numbers, then

n

(4.30) /s Zajg,'(s) v, (ds) = jz;;ajwj(zo),

I=1
2 2

(4.31) /SZa,-g,-(s) vids) =Y Bk | Y_asmi(er) | = (Ky,w),
j=1 k j=1

(4.32) /s (/;+ min (1,92 (s)z?) p(s,dz:)) v(ds) = / min (1,72(z)) M(dz).

£

We are now ready to state and prove the most basic result of this section; this, as we

will see, essentially provides the spectral representations of all discrete ID processes.

THEOREM 4.7. Let u be an ID prob. measure on £; with Lévy representation [z,, K, M|
and let A be the associated ID r. measure on S. Let Y,() = no(-) n = 1,2,..., be ther.

variables on (€2, B(€;), ). Then the functions gn’s are A-integrable, and we have

(Y} 2 {/sgndA}-

PROOF: In order to see that g,’s are A-integrable, we have to verify (i)-(iii) of Theo-
rem 2.3. But, in view of (4.31) and (4.32), and the fact that ft; min(1, 7, (2)2)M(d2) <
[y min (1,]|2]|*) M(dz2) < oo, we need only verify (i). Thus, in view of (4.30), we need
only to verify that

/s (/R [ (gn(s)z) - gn(s)f(x)lp(s,d:)> v(ds)

is finite. But this follows since the absolute value of the integrand is no more than (1 +
1gn(s)|) max (1, 9%(s)) and since |gn(s)| < 1 and v is finite.
In order to show {Y,} 4 {[5 gndA}, we must prove

k

k
(4.33) LY oy ()= £ Za,-/sg,-dA (1),

=1
for every fixed k, and a,,...,ax real.
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Now, the left side of (4.33)

k

= Eexp iZa,-Y,'
=1
k .
[ oo i3 et au- [ tona
[4 : ¢
2 j=1 2

= exp {i<zo,y) -3 (Ky,y) + /£2 (e‘(””> -1 —i(T(Z),y)> dM},

where y = (a;,...,ax, 0,0,...); and the right side of (4.33), by (2.5),

2

~exp {i / _}:a,g,(s)) v, (ds) - § / (f;a,.g,(s) v1(ds)

J=1

Thus, recalling (4.30) and (4.31), we need only to verify that

(4.34) /l (e‘<"y> -1 —i(T(z),y)) dM
-_-/S /m e:‘z(z::la;ai(e)) -1—1 Ek:ajgj(s) 7(z) | p(s,dz) | v(ds).

But, from (4.19), the left side of this equation

= /S [./;e-* (e‘<"9‘l(’)'y> —1-1i{r(zp~(s)) ,y)) p(s,dr)] v(ds)
- /5 /R+ R DBMIETL A (R O) BEPE Zaf"f (= 1(s)) | 7(z) | o(s,dz) | v(ds),

since

zp " 1(s), if 0<|lzp M(s)|=2z<1
r(zp ' (s)) = » : |
“fg_—lgﬁ:go_l(s), if z>1 |

Thus, since x; (p~'(s)) = g;(s), we have the validity of (4.34). I

Now we show, in the following corollary, that the above theorem yields spectral repre-

sentations of all discrete ID process without having to center or symmetrize the processes.
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COROLLARY 4.8. Let {X,} be an ID process satisfying E|X,|? < oo, for some ¢ > 0.
Let b, > 0 be such that Y = {b, X, }ely almost surely. Let u be the law of Y on €y (which

is ID [20]); and let A be the associated ID r. measure on S, then f, = b 'g,’ belong to
Le,(S;)), for any 0 < p < ¢; and

(4.35) {Xn} 2 {/s f,,dA}.

PROOF: Clearly f,’s are A-integrable as g,’s are. To see that (4.35) holds; let a,,...,ax

be real numbers, then, noting that £(Y1,...,Ys) = L (71(-),...,7k(-)) and using the above
theorem, we have

k
Y ax =22y 0

It t
oSS [ 88
M= il
Np. s?.. Iun
B o
> )
- B
= ™

showing the validity of (4.35). Finally, since E|X,|F = E| fs fndA|P < oo, for any 0 < p <
g, we have from Theorem 3.3 that fneLg (S;A). B

Before we can assert that the above theorem yields known spectral representations for

discrete stable and semistable processes, we need one more result:

LEMMA 4.9. Let Y = {Y,} be an ID process with almost all sample paths in £,. Then
= L(Y) is an S(a) (resp. S(r,a); SD) prob. measure if Y is an S(a) (resp. S(r,a); SD)
process. Further, if Y is centered S(a) (resp. S(r,a)) process then p is a centered S(a)
(resp. S(r,a)) prob. measure.

PROOF: A proof of the last part in the centered S(r, a) case is provided in [20]. Similar
proof works in the other cases. We outline the proof in the SD case. Denote by 7y, .
the natural projection from £; onto R"; and let 0 < a < 1 be fixed. First observe
pory! n=L(Y1,...,Yp)and (a-p)ony}! =a-(uoni! ) =a-L(Y1,...,Y,). Hence,

as Y is a SD process, there exists a unique prob. measure v, on R" (recall (1.3)) satisfying

1
sy

(4.36) po rl”"l,"n =(a-p)omy  n*Un.
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Now, using Kolmogorov’s extension theorem, we construct a unique prob. measure v on

R: R* with vonxy! | =wv,. Using (4.36) and viewing the measures 4 and a - 4 on R> and
. using ch. functions, we find
’: . # = a . “ * U
P
N on R*. But, then 1 = u(f;) = ft, v(€z2 + z)a - u(dz); hence v(£3) = 1. 8

In view of Corollary 4.8, Lemma 4.9 and Proposition 4.4, we obtain all known spectral

representation for discrete parameter stable and semistable processes [2, 7, 13, 20, 27,

\ . .

28| without having to center or to symmetrize the process. Of course, these three results
put together also yield similar spectral representations for SD processes.

' V. SPECTRAL REPRESENTATIONS OF CENTERED

3“: CONTINUOUS PARAMETER ID PROCESSES

¥ -<.'l|

f», Unlike the discrete case, our methods, unfortunately, do not allow us to obtain spectral

. representations for arbitrary continuous parameter ID processes. However, if the process
satisfies some additional conditions then one can indeed obtain spectral representations

- for such a process. These, besides providing spectral representations for new classes of ID

7, processes, also yield, in a unified way, all previously known spectral representations for

- stable and semistable processes. We address these points in this section; as we noted in
-3 the previous section, the notations and convention of the previous section are in effect in
5 this section as well.

Let T be an arbitrary set and X = {X;:teT} be an ID process which is separable in
N Lq(= Lqg(0; P)), 0 < ¢ < o0 (i.e., there exists a countable set T, = {t,} of T such that,
" for every teT, there is sequence {s,} C T with X, — X;in Lg). Recall that if T is a

- separable metric space and X is Lq,-continuous than X is separable in L.
N If ¢ = 0, we choose b,, > 0 so that
A
- 0
> 2
: Y [baXn|? < oo,
:. [} n=1
, almost surely, where X, = X;_; if ¢ > 0 (hence E [X;|’ < oo, for all t), then we choose
- b, > 0 satisfying, additionally,
N
L4
4

2
00 3
- (5.1) E (Z |b,,X,,|2) < oo.
' n=1
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if 2 < ¢ < 0o. Thus, if ¢ > 0, then we have that ft2 ||2||9dp < oo; hence f{[|z|l>l} llz||9dM <
s oo, where M is the Lévy measure of u, the law of Y = {Y,, = b,X,} on £;. Further,
recalling (4.19), we have

../:-: : ~ /(uzu>x} =A"ah = / (/[ lze™ ()71 (2] > 1) (s, dI)) v(ds)
// 12|71 (j2] > 1) p(s, dz)v(ds)

e

» S .
Byt e e T
s e
.

.

(5.2) > / |z|9] (|z| > 1) F4(dz), for every A.
Rt
o In the following, the above assumptions and notations will be in effect.
i

A We shall obtain spectral representations for ID processes X which satisfy any one of the
v . - .

5: following additional assumptions:

i (A-1) X is symmetric and 0 < g, arbitrary,
- -. (A-2) X is arbitrary (as above) and 1 < ¢ with E(X,;) =0,

:ﬁ (A-3) X is centered S(a) or centered S(r,a) 0 < a<2and 0< ¢ < a.

A In order to obtain these spectral representations, we need to define additional r. measures
'- (besides A in the previous section) associated to the p. measure u (the law of Y). If X and
h J.‘.\ — —
A q satisfy (A-1), we associate to u the symmetric r. measure A, with parameters (0,7, F.
Ry e q
, :$ (see the discussion prior to Lemma 4.6). If X and g satisfy (A-2), we associate to u ther.
measure A, with parameters (v,, v,, F.), where v, and v, are given in (3.9) (recall that,
. 4 in view of (5.2), E [A4(A)|7 < 00). If X is a centered S(a) (resp. S(r,a)) process, then by

7 7
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Lemma 4.9, u is a centered S(a) (resp. S(r,a)) p. measure; and, hence by Proposition 4.4,
F is a S(a) (resp. S(r,a)) Lévy measure. In this case, we associate to u the r. measure
A with parameters (v,, 0, F), where v, is given in (3.9), if 1 < a < 2, and in (3.11),
if 0 < a < 1. Note that, as follows from (3.9) and (3.11), A is a centered S(a) (resp.
S(r,a)) r. measure. Similar remark applies when X satisfies (A-1) and X is a centered
S(a), S(r,a) or SD process; and when X satisfies (A-2) and X is a SD process.

Now we are ready to state and prove our main result of this section.

THEOREM 5.1. Let X = {X; : teT} be an ID Lg-separable process satisfying any one
of (A-1)-(A-3) assumptions and let A be the corresponding ID r. measure with control

measure A. Then,

(5.3) x4 {/ fedA : teT},
s
where, for every t, fieLo (S;A). Further, under assumption (A-3) A is a centered S(a)

(resp. S(r,a)) r. measure, if X is a centered S{a) (resp. S(r,a)) r. process.

PROOF: The proofs under any one of the three assumptions are similar and use Proposi-

tions 3.6 and 3.8, the methods of proof of Theorem 4.7, and the Lg-separability of X. To

exhibit the ideas of the proof, we outline the proof only under the assumption (A-2).
Since v, is a finite measure, the proof of the fact that g,(s) = mn(0™'(s)), n = 1,2,...,

are Ag-integrable is exactly the same as in Theorem 4.7. Now we show that

(5.4) {mn()} 2 { /s gudh,).

Fix ay,...,ax, k real numbers; then recalling that

/ C';<zvy) dp, = eXp [‘_% <Ky, y> + /
A

£

{ei(z.y) 1= (z,y)} dM] )

for every yel, and, using (4.31) and (4.19), we have
k
LD aimi() | (1) =exp [—% /ng(s)ul (ds)
=1

k
. k
+ /t e ym (8 iZa,-r,*(z) M
2

=1
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where g(s) = zle a;g;(s). On the other hand, by (2.5),
655 ([ atelang) ) = exp | [ alelus(as) -} [ P (ehatas)
+ /s {/R+ (c"”(‘) —-1-1ig(s)r(z)) p(s,dz)} u(ds)] .

The first and last integral on the right side of (5.5) can be combined to see that f(fs g(s)

dA,) (1) is equal to £ (Zf,;l a,~1r,~(-)) (1); proving (5.4). Now using the same argument
as in Corollary 4.8, we observe that

{Xe, i taeT,} 2 {/ fe.dAg t,.eTo} :
s
where f;, = b, gn. According to Proposition 3.6, we have that the map
Ly (S,Aq) 2> fr— ] fdAgeLy(01, P)
s

is an isomorphism. Let teT'; choose a sequence {s,,} C T, such that X, — X in Lg. It
follows that { [ s fo., dAg} converges in Lg; hence, from Proposition 3.7, we have that there

exists an f in Lo, (S, ;) and that [¢ f, dA; — [¢ frdAg in Ly. Now, in order to prove
(5.3), we must show

£(th‘--»xtk)= E(./s fg,qu,...,‘/ng,‘qu)

for any fixed ¢,,...,€xeT. But this follows from the usual limiting arguments: Fix real
numbers a,,...,ax and choose {s;;} C T, with X,,; = X¢,, t = 1,...,k. Then, from what
we have proved above, fs fs,;d0q — fs fe,dAg in Lg, as j — oo, for each 1 = 1,...,k;
therefore Y°F_ a; [s feo;dAg — ¥ a [s fe.dAg in L. Thus, since vF, a;X,, —
¥ LaiXy, in Ly and Y5, a; [ fa;dAq 4 Z;=1 a;X,,;, we have YF Lai [ fedA, 4
Ele a;Xy,. This completes the proof as a;,...,ax were arbitrary. i

Remark 5.2. (a) As noted in the introductory remarks, the above theorem obviously

yields the known spectral representations for stable and semistable representations |2, 7,
13, 20, 27, 28|.

(b) One important point regurding the above theorem which is not explicitly stated but
should be emphasized is the fact that the map

k k
L,(Q; P)> Zan,’. — Zajf,’.eLq,v(S;z\)
1=1 =1

."
-\ -.
l.'
>
i“,
<,
o,

)
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extends to topological isomorphism from the Lg-closure of the span of {X, : teT} onto
the closure of the span of {f; : teT} in the space Lo (S;A). This fact is important in
that it would hopefully allow one, just as in the case of stable and Gaussian processes, to
study the prediction problem and the structural properties of the process by making use
of the above isomorphism and the rich structure of the (function) Musielak-Orlicz spaces
Lo, (S;2).

(¢) Theorem 5.1 raises the obvious question: For what other (besides those satisfying
(A-1)-(A-3)) L,-separable ID processes X = {X : teT}, one can obtain spectral represen-
tations? A careful look at the proof of Theorem 5.1 reveals that one can obtain a spectral
representation for any L,-separable ID processes X for which the r. measure A associated
to u (the law of Y = {b, X}, }) can be chosen so that:

(i) {mn()} = {f5 9ndA}

(ii) the map Lg,(S;A) 3 f — [s fdAeLy(02; P)
is an isomorphism, where b,, T, g, are as in the theorem. Unfortunately, this criterion is
not very satisfactory as the conditions (i) and (ii) are not explicitly given in terms of the
given ID process X. Nevertheless, as we exhibited in the proof of Theorem 5.1, if more
information is available about X this criterion can be successfully applied to obtain the
spectral representation.

(d) Finally, if one is interested in obtaining spectral representations of arbitrary (i.e.,
those which are not Lg-separable) ID processes X = {X; : teT}, the methods used in
Theorem 5.1 are not adequate. It appears that to handle such a problem one must replace
the space £, by a much larger linear space E, like R7, obtain a factorization of M, the
Lévy measure of the law of X on E, similar to (4.18) and then, using the methods of
Theorem 4.7, obtain a representation of X. At present, however, we are unable to see our

way through clearly on this point; and we hope to shed more light on this in the future.
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V1. REFINEMENT OF SPECTRAL REPRESENTATIONS

IN DISTRIBUTION TO SPECTRAL REPRESENTATIONS
WHICH HOLD ALMOST SURELY

In this section, we shall show that the gpectral representations of stochastic processes
obtained in the previous sections can be modified so that the new representations hold
almost surely. This, however, requires that the processes be redefined on a slightly larger
prob. space. The possibility of such a refinement, by making use of the randomization
lemma (Lemma 1.1 [12]), was suggested to us by O. Kallenberg. It is a great pleasure for
both of us to thank Prof. Kallenberg for this suggestion. For our purposes, we shall need a
slight generalization of the randomization lemma, which can be proven essentially by the

same argument as Lemma 1.1 [12]. We omit this proof.

LEMMA 6.1. Let £ and n’ be random elements defined on the prob. spaces (1, P) and
(0, P’), and taking values in the spaces S and T, respectively, where S is a separable
metric space while T is a Polish space. Assume that § 4 f(n') for some Borel measurable

function f : T — S. Then there exists a random element n 4 n' on the (“randomized”)
prob. space (01 x [0,1], P x Leb) such that £ = f(n) a.s. P x Leb.

THEOREM 6.2. Let {X, : teT} be an ID stochastic process defined on a prob. space
(N, P). Assume that

(X¢:teT} 2 {/ fedA' : teT},
s

where A’ is an ID r. measure defined on a prob. space (1, P') and S is a Borel subset of a
Polish space. Then there exists an ID r. measure A defined on the prob. space (11 x [0,1],
P x Leb) such that

{A(A) : AeS} £ {A(A) : AeS)
(here § is the Borel 0-algebra of S) and

Xg :/ ftdA a.s. P x LCb,
s

for every teT.

PROOF: We have that fieLg_(S;A) for every teT, where A is the control measure of A".
Since § is countably generated, Lg_ is separable. Hence there exists a set T, = {t,}22, C
T such that {f, }32, is dense in {fi}s1 C Lg . Define £ : 1 — R by

€(w) = (X, (W), Xey(w), ...).
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Choose §, = {A,}52, to be a countable algebra of sets such that §, C § and o($,) = §.
Define n’ : 1 — R by

n'(W) = (A'(A)(W), A'(42)(w), ...).

Since, for every feLgo_, there exists a sequence {g, } of simple §,-measurable functions such
that g, — fin Lg_, we get, by Theorem 3.3, that fs9.dA" — [ fdA’ in prob. as k — oo.
In particular, [o fdA’ is equal as. [P’] to some o {A'(4;) : j > 1} = o(n’)-measurable r.
variable. Consequently, for every n, there exists a Borel function p, : R® — R such

that

(6.1) / ft.dA' = p,.(n) as. [P'].
s

Then, by the assumption of our theorem,

{X;,:n>1} 4 {on(n’'):n>1}

or
¢ a(n),

where & : R® —— R is the Borel function defined by ®(z) = (v, (z),0,(z)},...), ZeR*.
In view of Lemma 6.1, there exists an R™-valued r. element n defined on (11x [0, 1], Px Leb)
such that n £ n’ and ¢ = ®(n) a.s. P x Leb. Put

A(Aj) = n,, AjeS,.

. . ... d .
Since n' is the restriction of the r. measure A’ to the algebra S, and n = n’, there exists a

unique (modulo P x Leb) extension of A to a r. measure on o(S,) = S such that
(6.2) {A(A) : AeS} 2 {A'(A) : AeS).

By (6.1) we get

e.(n) = . fi.dA a.s. P x Leb;
which yields
(6.3) X, = s fi.dA a.s. P x Leb,
47
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for every n > 1.
Let now teT be arbitrary. We can choose a sequence {t,.(k) }:°=1 C T, such that f; ., —

fein Lg . By (6.2) and the assumption of our theorem,

(Xt,,(“, Xt) é (/5 ftn(,‘)dA, LfgdA)

Since [ fi. ., dA — [ fidA in P x Leb as k — oo, we get that X; , — X;in P x Leb
as k — oc. By (6.3), X; = fs fidA a.s. P x Leb. 1

Remark 6.3. In the above proof, the fact that the r. measure A is ID or even indepen-
dently scattered is not important. In fact, similar methods can be used to prove a version
of Theorem 6.2, where A is an arbitrary random measure and [ fdA is defined as a limit,

in some appropriate sense, of stochastic integrals of § -measurable simple functions.
V1I. APPENDIX

PROOF OF PROPOSITION 2.4: First we note that (c) implies that @, (-, B) is o-finite for
every BeB. To begin with we assume, in addition, that X = R and 8 = B(R).
Note, for every fixed BeB, Q, (-, B) < Q,(-,X) = A,(+); therefore we can define

(1) (. B) = 2B

Using uniqueness of the Radon-Nikodym derivative and the properties of Q_, one can easily
verify that g, satisfies the following properties:

(a') 1f {B;} C B, B, 1 B then q,(-, B;) T go(-, B) a.e. [A,],

(b) If {B;} C B, B; | B, then g, (-, B;) | (-, B) a.e. [A,],

(¢) ¢, (-, X) =1a.e. [A,]

Let D be any countable dense subset of R; using (a’), (b’) and (¢’) we can choose a
set MeA such that A (M) = 0 and if t ¢ M, then ¢ (¢, (—o0,r1]) < g,(t, (—o0,r2]), for
r1, r2¢D, ry < ry; and liTm g, (t,(—o0,r]) =1, }im g, (t,(—o0,r]) = 0. Let, for r eD,

r"e? rrfﬁw
Nrp = (€M limg, (t, (=00,r]) > g, (t,(—00,7,]) ¢
reD

then, by (b’), A(N, ) = 0, for all r,eD. Set N = M U (U N,); and define, for every

"o reD
(t,z)eT x R,
G(z), if teN,
F(t,z) =
lim,z g, (t,(—00,r]), ift¢g N
reD
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where G is an arbitrary prob. distribution function on R. It is easy to see that, for
every fixed t, F(t,-) is a prob. distribution function on R and, for every fixed z, F(-,z)

is measurable on T. Thus, for each t, there exists a unique prob. measure ¢(t,:) on R

satisfying
q(t,(—o0,z]) = F (t,2),
for every zeR. Now, using the standard monotone class theorem argument, we obtain

that, for each BeB, ¢(-, B) is measurable and that ¢(-, B) = ¢,(-, B) a.e. [A,]. Hence, we
have that ¢ satisfies (d) and (¢) and, from (7.1),

(1.2 Qu(4.8) = [ alt. ). (a1)
o for all AcA, BeB.
};'_‘:: Now let (X, B) be standard Borel space; then one can find a Borel subset E of R such
Y that B and B(E) are o-isomorphic. We denote this isomorphism by 7, and we define
5 Q,(4,F) = Q, (4,7 ' (FNE)),
IS for AeA, FeB(R); then, from what we have proved above, we obtain ¢’ : Tx B(R) — [0,1]
. which satisfies (d) and (e); and, (7.2) with Q, replaced by Q! and ¢ by ¢’. Finally, let
T q(t,B) = ¢'(t,7(B)),
S
- for every teT, BeB. Then clearly g satisfies (d) and (e); and, from (7.2), we also have
N ,
= Q.(4,B) = Q. (4,7(B)
= [ ¢ trE) e

- / a(t, B, (dt).

PRRRRER
,

Now, using Tulcea’s theorem [1, p. 209] there exists a unique @ on A x B such that (2.2)
holds. The uniqueness of g(-,-) as stated in the last part of the proposition now follows

easily using the fact that B is countably generated. B
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